Dynamic network impairments underlie cognitive fluctuations in Lewy body dementia

Elie Matar, Kaylena A. Ehgoetz Martens, Joseph R. Phillips, Gabriel Wainstein, Glenda M. Halliday, Simon J. G. Lewis, James M. Shine

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Cognitive fluctuations are a characteristic and distressing disturbance of attention and consciousness seen in patients with Dementia with Lewy bodies and Parkinson's disease dementia. It has been proposed that fluctuations result from disruption of key neuromodulatory systems supporting states of attention and wakefulness which are normally characterised by temporally variable and highly integrated functional network architectures. In this study, patients with DLB (n = 25) and age-matched controls (n = 49) were assessed using dynamic resting state fMRI. A dynamic network signature of reduced temporal variability and integration was identified in DLB patients compared to controls. Reduced temporal variability correlated significantly with fluctuation-related measures using a sustained attention task. A less integrated (more segregated) functional network architecture was seen in DLB patients compared to the control group, with regions of reduced integration observed across dorsal and ventral attention, sensorimotor, visual, cingulo-opercular and cingulo-parietal networks. Reduced network integration correlated positively with subjective and objective measures of fluctuations. Regions of reduced integration and unstable regional assignments significantly matched areas of expression of specific classes of noradrenergic and cholinergic receptors across the cerebral cortex. Correlating topological measures with maps of neurotransmitter/neuromodulator receptor gene expression, we found that regions of reduced integration and unstable modular assignments correlated significantly with the pattern of expression of subclasses of noradrenergic and cholinergic receptors across the cerebral cortex. Altogether, these findings demonstrate that cognitive fluctuations are associated with an imaging signature of dynamic network impairment linked to specific neurotransmitters/neuromodulators within the ascending arousal system, highlighting novel potential diagnostic and therapeutic approaches for this troubling symptom.
Original languageEnglish
Article number16
Number of pages9
Journalnpj Parkinson's Disease
Volume8
Issue number1
DOIs
Publication statusPublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Dynamic network impairments underlie cognitive fluctuations in Lewy body dementia'. Together they form a unique fingerprint.

Cite this