Editorial : new insights into salinity sensing, signaling and adaptation in plants

Honghong Wu, Camilla Beate Hill, Giovanni Stefano, Jayakumar Bose

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Plants under salt stress require additional energy supply to fuel salt tolerance mechanisms and growth. Bandehagh and Taylor establish that plants must strike a balance between energy supply and demand to maintain growth and development during salt stress. This review (1) summaries how salt stress affects different physiological and biochemical processes altering the abundance of different metabolites that are feeding into regular and alternative respiratory pathways and shunts; (2) critically analyses how these metabolic adjustments might help plants to tolerate the salt better; (3) identifies research gaps; and (4) proposes suggestions for future breeding programs targeting high energy-use efficiency. Farhat et al. studied oxidative phosphorylation of mitochondria by comparing mitochondria purified from the suspension cultures of a halophyte (Cakile maritima) and a closely related glycophyte (Arabidopsis thaliana) plant. The abundance of respiratory supercomplexes (monomeric complex I, dimeric complex III and I + III2 supercomplex) were found to be higher in halophyte mitochondria in comparison with glycophyte, implying the efficient electron transfer from complex I to complex III in halophyte mitochondria. Further, the stability of ATP synthase (complex V) was also found to be higher in the halophyte, suggesting that halophyte mitochondria are better equipped to supply the additional ATP required to support the salt stress response.
Original languageEnglish
Article number604139
Number of pages4
JournalFrontiers in Plant Science
Volume11
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

© 2021 Wu, Hill, Stefano and Bose. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Fingerprint

Dive into the research topics of 'Editorial : new insights into salinity sensing, signaling and adaptation in plants'. Together they form a unique fingerprint.

Cite this