TY - JOUR
T1 - Effect of induced alkalosis on the power-duration relationship for "'all-out" exercise
AU - Vanhatalo, Anni
AU - McNaughton, Lars
AU - Siegler, Jason C.
AU - Jones, Andrew M.
PY - 2010
Y1 - 2010
N2 - Purpose: We tested the hypotheses that sodium bicarbonate (NaHCO3) ingestion would result in no alteration in critical power (CP) but would improve performance in a 3-min all-out cycling test by increasing the total amount of work done above CP (W'). Methods: Eight habitually active subjects completed 3-min all-out sprints against fixed resistance in a blind randomized design after a dose of 0.3 g•kg-1 body mass of NaHCO3 and 0.045 g•kg-1 body mass of sodium chloride (placebo; PL trial). Blood acid-base status was assessed from arterialized fingertip blood samples before and after exercise. The CP was calculated as the mean power output during the final 30 s of the test, and the W' was estimated as the power-time integral >CP. Results: The NaHCO3 dose was effective in inducing preexercise alkalosis as indicated by changes in blood pH (PL = 7.40 ± 0.02 vs NaHCO3 = 7.46 ± 0.01, P < 0.001), [bicarbonate] (PL = 21.9 ± 3.0 vs NaHCO3 = 29.0 ± 3.8 mM, P < 0.05), and base excess (PL = -1.9 ± 2.5 vs NaHCO3 = 5.0 ± 3.0 mM, P < 0.05). There were no significant differences in the total work done (PL = 62.8 ± 10.1 vs NaHCO3 = 62.7 ± 10.1 kJ), the CP (PL = 248 ± 50 vs NaHCO3 = 251 ± 51 W), or the W' (PL = 18.2 ± 6.4 vs NaHCO3 = 17.5 ± 6.0 kJ) estimates between treatments. Conclusions: Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.
AB - Purpose: We tested the hypotheses that sodium bicarbonate (NaHCO3) ingestion would result in no alteration in critical power (CP) but would improve performance in a 3-min all-out cycling test by increasing the total amount of work done above CP (W'). Methods: Eight habitually active subjects completed 3-min all-out sprints against fixed resistance in a blind randomized design after a dose of 0.3 g•kg-1 body mass of NaHCO3 and 0.045 g•kg-1 body mass of sodium chloride (placebo; PL trial). Blood acid-base status was assessed from arterialized fingertip blood samples before and after exercise. The CP was calculated as the mean power output during the final 30 s of the test, and the W' was estimated as the power-time integral >CP. Results: The NaHCO3 dose was effective in inducing preexercise alkalosis as indicated by changes in blood pH (PL = 7.40 ± 0.02 vs NaHCO3 = 7.46 ± 0.01, P < 0.001), [bicarbonate] (PL = 21.9 ± 3.0 vs NaHCO3 = 29.0 ± 3.8 mM, P < 0.05), and base excess (PL = -1.9 ± 2.5 vs NaHCO3 = 5.0 ± 3.0 mM, P < 0.05). There were no significant differences in the total work done (PL = 62.8 ± 10.1 vs NaHCO3 = 62.7 ± 10.1 kJ), the CP (PL = 248 ± 50 vs NaHCO3 = 251 ± 51 W), or the W' (PL = 18.2 ± 6.4 vs NaHCO3 = 17.5 ± 6.0 kJ) estimates between treatments. Conclusions: Despite notably enhanced blood-buffering capacity, NaHCO3 ingestion had no effect on the W', the CP, or the overall performance during 3 min of all-out cycling. It is concluded that preexercise blood alkalosis had no influence on the power-duration relationship for all-out exercise.
KW - alkalosis
KW - cycling
UR - http://handle.uws.edu.au:8081/1959.7/505923
U2 - 10.1249/MSS.0b013e3181b71a4a
DO - 10.1249/MSS.0b013e3181b71a4a
M3 - Article
SN - 0195-9131
VL - 42
SP - 563
EP - 570
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 3
ER -