TY - JOUR
T1 - Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites
AU - Wang, Yu
AU - Yang, Chunhui
AU - Mai, Yiu-Wing
AU - Zhang, Yingyan
PY - 2016
Y1 - 2016
N2 - Fast growing power densities of modern electronic devices demand high-performance thermal interface materials (TIMs). Owing to the superior thermal conductivity of graphene, composites with graphene fillers dispersed in polymer matrix are expected to be promising TIM candidates. However, the thermal conductivity of graphene-polymer composites is hindered by a high thermal resistance across the interface between graphene fillers and polymer matrix. This research focuses on modulating the thermal transport across the graphene-polymer interface by employing a non-covalent functionalisation technique. Using molecular dynamics simulations, the effects of different non-covalent functional molecules on the graphene-paraffin interfacial thermal resistance are investigated systematically. It is found that the interfacial thermal resistance can be considerably reduced by non-covalent functionalisation and the reduction depends on the coverage of functional molecules. The thermal transport properties of the composites are improved without compromising their mechanical properties. Different functional molecules including 1-pyrenebutyl, 1-pyrenebutyric acid and 1-pyrenebutylamine can produce similar reductions in the interfacial thermal resistance. Based on the effective medium theory, it is demonstrated that the overall thermal conductivity of graphene-paraffin composites increases when the interfacial thermal resistance decreases, which can be achieved by using the non-covalent functionalization technique.
AB - Fast growing power densities of modern electronic devices demand high-performance thermal interface materials (TIMs). Owing to the superior thermal conductivity of graphene, composites with graphene fillers dispersed in polymer matrix are expected to be promising TIM candidates. However, the thermal conductivity of graphene-polymer composites is hindered by a high thermal resistance across the interface between graphene fillers and polymer matrix. This research focuses on modulating the thermal transport across the graphene-polymer interface by employing a non-covalent functionalisation technique. Using molecular dynamics simulations, the effects of different non-covalent functional molecules on the graphene-paraffin interfacial thermal resistance are investigated systematically. It is found that the interfacial thermal resistance can be considerably reduced by non-covalent functionalisation and the reduction depends on the coverage of functional molecules. The thermal transport properties of the composites are improved without compromising their mechanical properties. Different functional molecules including 1-pyrenebutyl, 1-pyrenebutyric acid and 1-pyrenebutylamine can produce similar reductions in the interfacial thermal resistance. Based on the effective medium theory, it is demonstrated that the overall thermal conductivity of graphene-paraffin composites increases when the interfacial thermal resistance decreases, which can be achieved by using the non-covalent functionalization technique.
KW - graphene
KW - mechanical properties
KW - nanocomposites (materials)
KW - polymers
KW - thermal properties
UR - http://handle.uws.edu.au:8081/1959.7/uws:34222
U2 - 10.1016/j.carbon.2016.02.069
DO - 10.1016/j.carbon.2016.02.069
M3 - Article
SN - 0008-6223
VL - 102
SP - 311
EP - 318
JO - Carbon
JF - Carbon
ER -