TY - JOUR
T1 - Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor
AU - Johir, M. A. H.
AU - Vigneswaran, S.
AU - Sathasivan, A.
AU - Kandasamy, J.
AU - Chang, C. Y.
PY - 2012
Y1 - 2012
N2 - In this study, the influence of organic loading rate (OLR) on the performance of a membrane bio-reactor (MBR) was investigated. The MBR was operated with 6 different OLRs between 0.5 and 3.0 kg COD/m(3)d. The hydrodynamic parameters of the MBR were kept constant. The hydraulic retention time and sludge retention time were kept at 8h and 40 d respectively. From the experimental investigation, it was found that the removal efficiency of DOC, COD and NH(4)-N decreased when OLRs were increased from 0.5 to 3.0 kg COD/m(3)d. Higher OLRs of 2.75-3.0 kg COD/m(3)d resulted in a higher transmembrane pressure development. The fractionation of organic matters showed more hydrophilic substances with higher OLRs. A detailed organic matter characterization of membrane foulant, soluble microbial product and extracellular polymeric substances showed that bio-polymers type substances together with humic acid and lower molecular neutral and acids were responsible for membrane fouling.
AB - In this study, the influence of organic loading rate (OLR) on the performance of a membrane bio-reactor (MBR) was investigated. The MBR was operated with 6 different OLRs between 0.5 and 3.0 kg COD/m(3)d. The hydrodynamic parameters of the MBR were kept constant. The hydraulic retention time and sludge retention time were kept at 8h and 40 d respectively. From the experimental investigation, it was found that the removal efficiency of DOC, COD and NH(4)-N decreased when OLRs were increased from 0.5 to 3.0 kg COD/m(3)d. Higher OLRs of 2.75-3.0 kg COD/m(3)d resulted in a higher transmembrane pressure development. The fractionation of organic matters showed more hydrophilic substances with higher OLRs. A detailed organic matter characterization of membrane foulant, soluble microbial product and extracellular polymeric substances showed that bio-polymers type substances together with humic acid and lower molecular neutral and acids were responsible for membrane fouling.
UR - http://handle.uws.edu.au:8081/1959.7/528340
U2 - 10.1016/j.biortech.2011.12.002
DO - 10.1016/j.biortech.2011.12.002
M3 - Article
SN - 0960-8524
VL - 113
SP - 154
EP - 160
JO - Bioresource Technology
JF - Bioresource Technology
ER -