TY - JOUR
T1 - Effect of wood densification and GFRP reinforcement on the embedment strength of poplar CLT
AU - Rostampour-Haftkhani, Akbar
AU - Abdoli, Farshid
AU - Arabi, Mohammad
AU - Nasir, Vahid
AU - Rashidi, Maria
N1 - Publisher Copyright: © 2023 by the authors.
PY - 2023
Y1 - 2023
N2 - Embedment strength is an important factor in the design and performance of connections in timber structures. This study assesses the embedment strength of lag screws in three-ply cross-laminated timber (CLT) composed of densified poplar wood with densification ratios of 25% and 50%, under both longitudinal (L) and transverse (T) loading conditions. The embedment strength was thereafter compared with that of CLT reinforced with glass-fiber-reinforced polymer (GFRP). The experimental data was compared with results obtained using different models for calculating embedment strength. The findings indicated that the embedment strength of CLT specimens made of densified wood and GFRP was significantly greater than that of control specimens. CLT samples loaded in the L direction showed higher embedment strength compared to those in the T direction. In addition, 50% densification had the best performance, followed by 25% densification and GFRP reinforcement. Modelling using the NDS formula yielded the highest accuracy (mean absolute percentage error = 10.31%), followed by the Ubel and Blub (MAPE = 21%), Kennedy (MAPE = 28.86%), CSA (MAPE = 32.68%), and Dong (MAPE = 40.07%) equations. Overall, densification can be considered as an alternative to GFRP reinforcement in order to increase the embedment strength in CLT.
AB - Embedment strength is an important factor in the design and performance of connections in timber structures. This study assesses the embedment strength of lag screws in three-ply cross-laminated timber (CLT) composed of densified poplar wood with densification ratios of 25% and 50%, under both longitudinal (L) and transverse (T) loading conditions. The embedment strength was thereafter compared with that of CLT reinforced with glass-fiber-reinforced polymer (GFRP). The experimental data was compared with results obtained using different models for calculating embedment strength. The findings indicated that the embedment strength of CLT specimens made of densified wood and GFRP was significantly greater than that of control specimens. CLT samples loaded in the L direction showed higher embedment strength compared to those in the T direction. In addition, 50% densification had the best performance, followed by 25% densification and GFRP reinforcement. Modelling using the NDS formula yielded the highest accuracy (mean absolute percentage error = 10.31%), followed by the Ubel and Blub (MAPE = 21%), Kennedy (MAPE = 28.86%), CSA (MAPE = 32.68%), and Dong (MAPE = 40.07%) equations. Overall, densification can be considered as an alternative to GFRP reinforcement in order to increase the embedment strength in CLT.
KW - cross-laminated timber
KW - densification
KW - embedment strength
UR - http://www.scopus.com/inward/record.url?scp=85192375431&partnerID=8YFLogxK
U2 - 10.3390/app132212249
DO - 10.3390/app132212249
M3 - Article
AN - SCOPUS:85192375431
SN - 2076-3417
VL - 13
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 22
M1 - 12249
ER -