TY - JOUR
T1 - Effects of cigarette smoke on fertilization and embryo development in vivo
AU - Huang, Junjiu
AU - Okuka, Maja
AU - McLean, Mark
AU - Keefe, David L.
AU - Liu, Lin
PY - 2009
Y1 - 2009
N2 - OBJECTIVE:To determine the effects of smoking on eggs and subsequent embryo development by maternal exposure to cigarette smoke. DESIGN: Mice were exposed to cigarette smoke or cigarette smoke condensate (CSC) for 4 weeks and then examined for development and telomere function of embryos in vitro after fertilization. In addition, the effects of continuous smoke on embryo development and telomere length were determined by treating mice for 4 weeks, followed by continuous exposure to cigarette smoke or CSC after fertilization. SETTING: Laboratory study. ANIMAL(S): CD1 mice. INTERVENTION(S): Mice were exposed to cigarette smoke or CSC. MAIN OUTCOME MEASURE(S): The percentage (rate) of blastocyst development, quality of embryos assessed by total cell number, apoptosis, Oct4 expression (a molecular marker of embryonic stem cells), telomere length and loss, and chromosomal instability were compared between smoke- and CSC- treated mice and sham-treated mice. RESULT(S): Mice exposed to cigarette smoke or CSC for 4 weeks exhibited increased egg fragmentation or delayed fertilization, thus reducing development to blastocysts in vitro. Fragmented eggs showed increased reactive oxygen species. Mice exposed to smoke or CSC showed increased apoptosis and altered expression of Oct4 in developed embryos. The effects of smoke or CSC on embryo development showed a dose-dependent relationship to exposure time. Exposure to smoke or CSC beginning 4 weeks before fertilization altered expression of Oct4 and increased apoptosis in blastocysts. Notably, the rate of abnormal embryos significantly increased in the smoke and CSC groups. Smoke and CSC shortened telomeres in embryos, but their telomere shortening was not enough to induce major chromosome abnormalities in mice, which have unusually long telomeres. CONCLUSION(S): Together, the whole animal exposure model shows that cigarette smoke induces oxidative stress, telomere shortening, and apoptosis, and compromises embryo development in vivo.
AB - OBJECTIVE:To determine the effects of smoking on eggs and subsequent embryo development by maternal exposure to cigarette smoke. DESIGN: Mice were exposed to cigarette smoke or cigarette smoke condensate (CSC) for 4 weeks and then examined for development and telomere function of embryos in vitro after fertilization. In addition, the effects of continuous smoke on embryo development and telomere length were determined by treating mice for 4 weeks, followed by continuous exposure to cigarette smoke or CSC after fertilization. SETTING: Laboratory study. ANIMAL(S): CD1 mice. INTERVENTION(S): Mice were exposed to cigarette smoke or CSC. MAIN OUTCOME MEASURE(S): The percentage (rate) of blastocyst development, quality of embryos assessed by total cell number, apoptosis, Oct4 expression (a molecular marker of embryonic stem cells), telomere length and loss, and chromosomal instability were compared between smoke- and CSC- treated mice and sham-treated mice. RESULT(S): Mice exposed to cigarette smoke or CSC for 4 weeks exhibited increased egg fragmentation or delayed fertilization, thus reducing development to blastocysts in vitro. Fragmented eggs showed increased reactive oxygen species. Mice exposed to smoke or CSC showed increased apoptosis and altered expression of Oct4 in developed embryos. The effects of smoke or CSC on embryo development showed a dose-dependent relationship to exposure time. Exposure to smoke or CSC beginning 4 weeks before fertilization altered expression of Oct4 and increased apoptosis in blastocysts. Notably, the rate of abnormal embryos significantly increased in the smoke and CSC groups. Smoke and CSC shortened telomeres in embryos, but their telomere shortening was not enough to induce major chromosome abnormalities in mice, which have unusually long telomeres. CONCLUSION(S): Together, the whole animal exposure model shows that cigarette smoke induces oxidative stress, telomere shortening, and apoptosis, and compromises embryo development in vivo.
KW - cigarette smoke
KW - fertilization (biology)
UR - http://handle.uws.edu.au:8081/1959.7/550483
UR - https://www.clinicalkey.com.au/#!/content/playContent/1-s2.0-S0015028208035632
U2 - 10.1016/j.fertnstert.2008.07.1781
DO - 10.1016/j.fertnstert.2008.07.1781
M3 - Article
SN - 0015-0282
VL - 92
SP - 1456
EP - 1465
JO - Fertility and Sterility
JF - Fertility and Sterility
IS - 4
ER -