TY - JOUR
T1 - Electrical resistivity and mechanical properties of cementitious composite incorporating conductive rubber fibres
AU - Dong, Wenkui
AU - Li, Wengui
AU - Long, Guodong
AU - Tao, Zhong
AU - Li, Jianchun
AU - Wang, Kejin
PY - 2019
Y1 - 2019
N2 - Conductive cementitious composites with excellent conductivity and piezoresistivity can be potentially used for pavement deicing, concrete corrosion evaluations or structural health monitoring. Inspired by the practice of recycling rubber wastes for concrete manufacturing, the conductive rubbers are first added as enhanced fillers to improve the electrical conductivity of cementitious composite in this study. Based on the experimental investigations on electrical resistivity, mechanical properties and microstructure, the results show that cementitious composites containing conductive rubber fibres exhibit relatively low resistivity with nearly one order of magnitude to approximately 1 Ã 104 Ω cm. On the other hand, cementitious composites with aluminium/silver filled rubber (AR) exhibit better conductivity than the counterparts with carbon black filled rubber (CR). For CR reinforced composites (CRC) and AR reinforced composite (ARC) with more than 40 rubber fibres (0.64 vol%), the higher the rubber fibre content, the better is the conductivity but the slightly lower the compressive strength. The cementitious composites reinforced by 100 conductive rubber fibres (1.6 vol%) not only display excellent conductivity but also provides acceptable mechanical properties, with up to 30.6% increase in ultimate strain but only 17.3% reduction in compressive strength. Furthermore, cementitious composites with rubber fibres demonstrate better damping capacity by enlarging stress–strain hysteresis loops compared to the counterpart without rubber. Such promising conductivity and damping properties provide the cementitious composites with great potentials for being used as cementitious composite sensors and smart composites to self-monitor the structural health or traffic load of various transportation infrastructures, such as bridges, highways and pavements.
AB - Conductive cementitious composites with excellent conductivity and piezoresistivity can be potentially used for pavement deicing, concrete corrosion evaluations or structural health monitoring. Inspired by the practice of recycling rubber wastes for concrete manufacturing, the conductive rubbers are first added as enhanced fillers to improve the electrical conductivity of cementitious composite in this study. Based on the experimental investigations on electrical resistivity, mechanical properties and microstructure, the results show that cementitious composites containing conductive rubber fibres exhibit relatively low resistivity with nearly one order of magnitude to approximately 1 Ã 104 Ω cm. On the other hand, cementitious composites with aluminium/silver filled rubber (AR) exhibit better conductivity than the counterparts with carbon black filled rubber (CR). For CR reinforced composites (CRC) and AR reinforced composite (ARC) with more than 40 rubber fibres (0.64 vol%), the higher the rubber fibre content, the better is the conductivity but the slightly lower the compressive strength. The cementitious composites reinforced by 100 conductive rubber fibres (1.6 vol%) not only display excellent conductivity but also provides acceptable mechanical properties, with up to 30.6% increase in ultimate strain but only 17.3% reduction in compressive strength. Furthermore, cementitious composites with rubber fibres demonstrate better damping capacity by enlarging stress–strain hysteresis loops compared to the counterpart without rubber. Such promising conductivity and damping properties provide the cementitious composites with great potentials for being used as cementitious composite sensors and smart composites to self-monitor the structural health or traffic load of various transportation infrastructures, such as bridges, highways and pavements.
KW - cement composites
KW - electric resistance
KW - fibrous composites
KW - mechanical properties
KW - microstructure
KW - rubber
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:52018
U2 - 10.1088/1361-665X/ab282a
DO - 10.1088/1361-665X/ab282a
M3 - Article
SN - 1361-665X
SN - 0964-1726
VL - 28
JO - Smart Materials and Structures
JF - Smart Materials and Structures
IS - 8
M1 - 85013
ER -