Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals

William T. Hentley, Adam J. Vanbergen, Rosemary S. Hails, T. Hefin Jones, Scott N. Johnson

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Research into the impact of atmospheric change on predator–prey interactions has mainly focused on density dependent responses and trophic linkages. As yet, the chemical ecology underpinning predator–prey interactions has received little attention in environmental change research. Group living animals have evolved behavioral mechanisms to escape predation, including chemical alarm signalling. Chemical alarm signalling between conspecific prey could be susceptible to environmental change if the physiology and behavior of these organisms are affected by changes in dietary quality resulting from environmental change. Using Rubus idaeus plants, we show that elevated concentrations of atmospheric CO2 (eCO2) severely impaired escape responses of the aphid Amphorophora idaei to predation by ladybird larvae (Harmonia axyridis). Escape responses to ladybirds was reduced by >50 % after aphids had been reared on plants grown under eCO2. This behavioral response was rapidly induced, occurring within 24 h of being transferred to plants grown at eCO2 and, once induced, persisted even after aphids were transferred to plants grown at ambient CO2. Escape responses were impaired due to reduced sensitivity to aphid alarm pheromone, (E)-β-farnesene, via an undefined plant-mediated mechanism. Aphid abundance often increases under eCO2, however, reduced efficacy of conspecific signalling may increase aphid vulnerability to predation, highlighting the need to study the chemical ecology of predator–prey interactions under environmental change.
    Original languageEnglish
    Pages (from-to)1110-1114
    Number of pages5
    JournalJournal of Chemical Ecology
    Volume40
    Issue number10
    DOIs
    Publication statusPublished - 2014

    Keywords

    • aphids
    • climatic changes
    • pheromones

    Fingerprint

    Dive into the research topics of 'Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals'. Together they form a unique fingerprint.

    Cite this