TY - JOUR
T1 - Endogenous adenosine selectively modulates oxidant stress via the A1 receptor in ischemic hearts
AU - Reichelt, Melissa E.
AU - Shanu, Anu
AU - Willems, Laura
AU - Witting, Paul K.
AU - Ellis, Natasha A.
AU - Blackburn, Michael R.
AU - Headrick, John P.
PY - 2009
Y1 - 2009
N2 - We tested the impact of A1 adenosine receptor (AR) deletion on injury and oxidant damage in mouse hearts subjected to 25-min ischemia/45-min reperfusion (I/R). Wild-type hearts recovered ∼50% of contractile function and released 8.2 ± 0.7 IU/g of lactate dehydrogenase (LDH). A1AR deletion worsened dysfunction and LDH efflux (15.2 ± 2.6 IU/g). Tissue cholesterol and native cholesteryl esters were unchanged, whereas cholesteryl ester–derived lipid hydroperoxides and hydroxides (CE-O(O)H; a marker of lipid oxidation) increased threefold, and α-tocopherylquinone [α-TQ; oxidation product of α-tocopherol (α-TOH)] increased sixfold. Elevations in α-TQ were augmented by two- to threefold by A1AR deletion, whereas CE-O(O)H was unaltered. A1AR deletion also decreased glutathione redox status ([GSH]/[GSSG + GSH]) and enhanced expression of the antioxidant response element heme oxygenase-1 (HO-1) during I/R: fourfold elevations in HO-1 mRNA and activity were doubled by A1AR deletion. Broad-spectrum AR agonism (10 μM 2-chloroadenosine; 2-CAD) countered effects of A1AR deletion on oxidant damage, HO-1, and tissue injury, indicating that additional ARs (A2A, A2B, and/or A3) can mediate similar actions. These data reveal that local adenosine engages A1ARs during I/R to limit oxidant damage and enhance outcome selectively. Control of α-TOH/α-TQ levels may contribute to A1AR-dependent cardioprotection.
AB - We tested the impact of A1 adenosine receptor (AR) deletion on injury and oxidant damage in mouse hearts subjected to 25-min ischemia/45-min reperfusion (I/R). Wild-type hearts recovered ∼50% of contractile function and released 8.2 ± 0.7 IU/g of lactate dehydrogenase (LDH). A1AR deletion worsened dysfunction and LDH efflux (15.2 ± 2.6 IU/g). Tissue cholesterol and native cholesteryl esters were unchanged, whereas cholesteryl ester–derived lipid hydroperoxides and hydroxides (CE-O(O)H; a marker of lipid oxidation) increased threefold, and α-tocopherylquinone [α-TQ; oxidation product of α-tocopherol (α-TOH)] increased sixfold. Elevations in α-TQ were augmented by two- to threefold by A1AR deletion, whereas CE-O(O)H was unaltered. A1AR deletion also decreased glutathione redox status ([GSH]/[GSSG + GSH]) and enhanced expression of the antioxidant response element heme oxygenase-1 (HO-1) during I/R: fourfold elevations in HO-1 mRNA and activity were doubled by A1AR deletion. Broad-spectrum AR agonism (10 μM 2-chloroadenosine; 2-CAD) countered effects of A1AR deletion on oxidant damage, HO-1, and tissue injury, indicating that additional ARs (A2A, A2B, and/or A3) can mediate similar actions. These data reveal that local adenosine engages A1ARs during I/R to limit oxidant damage and enhance outcome selectively. Control of α-TOH/α-TQ levels may contribute to A1AR-dependent cardioprotection.
KW - adenosine
KW - antioxidants
KW - myocardial reperfusion
KW - oxidative stress
KW - receptors
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:43168
U2 - 10.1089/ars.2009.2644
DO - 10.1089/ars.2009.2644
M3 - Article
SN - 1523-0864
VL - 11
SP - 2641
EP - 2650
JO - Antioxidants & Redox Signaling
JF - Antioxidants & Redox Signaling
IS - 11
ER -