Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

Liang-xian Chen, Sheng Liu, Cheng-ming Li, Yi-chao Wang, Jin-long Liu, Jun-jun Wei

Research output: Contribution to journalArticlepeer-review

Abstract

Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite–ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.
Original languageEnglish
Pages (from-to)1108-1114
Number of pages7
JournalInternational Journal of Minerals , Metallurgy and Materials
Volume22
Issue number10
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering'. Together they form a unique fingerprint.

Cite this