TY - JOUR
T1 - Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering
AU - Chen, Liang-xian
AU - Liu, Sheng
AU - Li, Cheng-ming
AU - Wang, Yi-chao
AU - Liu, Jin-long
AU - Wei, Jun-jun
PY - 2015
Y1 - 2015
N2 - Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite–ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.
AB - Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite–ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.
UR - https://hdl.handle.net/1959.7/uws:71515
U2 - 10.1007/s12613-015-1174-z
DO - 10.1007/s12613-015-1174-z
M3 - Article
SN - 1674-4799
VL - 22
SP - 1108
EP - 1114
JO - International Journal of Minerals , Metallurgy and Materials
JF - International Journal of Minerals , Metallurgy and Materials
IS - 10
ER -