Enhanced efficacy of PEGylated liposomal cisplatin : in vitro and in vivo evaluation

Mohsen Ghaferi, Mohammad Javad Asadollahzadeh, Azim Akbarzadeh, Hasan Ebrahimi Shahmabadi, Seyed Ebrahim Alavi

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

This study aims to evaluate the potency of cisplatin (Cispt)-loaded liposome (LCispt) and PEGylated liposome (PLCispt) as therapeutic nanoformulations in the treatment of bladder cancer (BC). Cispt was loaded into liposomes using reverse-phase evaporation method, and the formulations were characterized using dynamic light scattering, scanning electron microscopy, dialysis membrane, and Fourier-transform infrared spectroscopy (FTIR) methods. The results showed that the particles were formed in spherical monodispersed shapes with a nanoscale size (221–274 nm) and controlled drug release profile. The cytotoxicity effects of LCispt and PLCispt were assessed in an in vitro environment, and the results demonstrated that PLCispt caused a 2.4- and 1.9-fold increase in the cytotoxicity effects of Cispt after 24 and 48 h, respectively. The therapeutic and toxicity effects of the formulations were also assessed on BC-bearing rats. The results showed that PLCispt caused a 4.8-fold increase in the drug efficacy (tumor volume of 11 ± 0.5 and 2.3 ± 0.1 mm3 in Cispt and PLCispt receiver rats, respectively) and a 3.3-fold decrease in the toxicity effects of the drug (bodyweight gains of 3% and 10% in Cispt and PLCispt receiver rats, respectively). The results of toxicity were also confirmed by histopathological studies. Overall, this study suggests that the PEGylation of LCispt is a promising approach to achieve a nanoformulation with enhanced anticancer effects and reduced toxicity compared to Cispt for the treatment of BC.
Original languageEnglish
Article number559
Number of pages16
JournalInternational Journal of Molecular Sciences
Volume21
Issue number2
DOIs
Publication statusPublished - 2020

Open Access - Access Right Statement

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Enhanced efficacy of PEGylated liposomal cisplatin : in vitro and in vivo evaluation'. Together they form a unique fingerprint.

Cite this