TY - JOUR
T1 - Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest
AU - Chambers, Susan M.
AU - Curlevski, Nathalie J.
AU - Cairney, John W. G.
PY - 2008
Y1 - 2008
N2 - Fungi were isolated from the roots of 17 plant species from the families Apiaceae, Cunoniaceae, Cyperaceae, Droseraceae, Fabaceae-Mimosoideae, Lomandraceae, Myrtaceae, Pittosporaceae, Proteaceae and Stylidiaceae at a sclerophyll forest site in New South Wales, Australia. Internal transcribed spacer (ITS) restriction fragment length polymorphism (RFLP) and sequence comparisons indicated that the isolated fungi had affinities to a range of ascomycetes, basidiomycetes and zygomycetes. Four RFLP types had closest affinities to previously identified Helotiales ericoid mycorrhizal (ERM) or Oidiodendron spp. Isolates representing six RFLP types, which were variously isolated from all 17 plant species, formed ERM coils in hair root epidermal cells of Woollsia pungens (Ericaceae) under gnotobiotic conditions. Three of these isolates formed intercellular hyphae, intracellular hyphae and/or microsclerotia, which are typical of dark septate endophyte infection, in roots of Stylidium productum (Stylidiaceae), indicating an ability to form different types of association with roots of different hosts. Overall the data indicate that a broad range of plant taxa may act as repositories for ERM fungi in sclerophyll forest soil.
AB - Fungi were isolated from the roots of 17 plant species from the families Apiaceae, Cunoniaceae, Cyperaceae, Droseraceae, Fabaceae-Mimosoideae, Lomandraceae, Myrtaceae, Pittosporaceae, Proteaceae and Stylidiaceae at a sclerophyll forest site in New South Wales, Australia. Internal transcribed spacer (ITS) restriction fragment length polymorphism (RFLP) and sequence comparisons indicated that the isolated fungi had affinities to a range of ascomycetes, basidiomycetes and zygomycetes. Four RFLP types had closest affinities to previously identified Helotiales ericoid mycorrhizal (ERM) or Oidiodendron spp. Isolates representing six RFLP types, which were variously isolated from all 17 plant species, formed ERM coils in hair root epidermal cells of Woollsia pungens (Ericaceae) under gnotobiotic conditions. Three of these isolates formed intercellular hyphae, intracellular hyphae and/or microsclerotia, which are typical of dark septate endophyte infection, in roots of Stylidium productum (Stylidiaceae), indicating an ability to form different types of association with roots of different hosts. Overall the data indicate that a broad range of plant taxa may act as repositories for ERM fungi in sclerophyll forest soil.
KW - New South Wales
KW - endophytes
KW - helotiales
KW - mycorrhizal fungi
KW - sclerophyll forests
KW - soils
UR - http://handle.uws.edu.au:8081/1959.7/488180
M3 - Article
SN - 0168-6496
JO - FEMS Microbiology Ecology
JF - FEMS Microbiology Ecology
ER -