TY - JOUR
T1 - European semiarid Mediterranean ecosystems are sensitive to nitrogen deposition : impacts on plant communities and root phosphatase activity
AU - Ochoa-Hueso, Raúl
AU - Stevens, Carly J.
PY - 2015
Y1 - 2015
N2 - Nitrogen (N) deposition is predicted to impact on the structure and functioning of Mediterranean ecosystems. In this study, we measured plant species composition, production and root phosphatase activity in a field experiment in which N (0, 10, 20 and 50 kg N ha-1 year-1) was added since October 2007 to a semiarid shrubland in central Spain. The characteristically dominant annual forb element responded negatively to N after ~2.5 and ~3.5 years. In contrast, the nitrophilous element (mainly crucifers) increased with N after ~2.5 and ~5.5 years, a response controlled by between-year variations in rainfall and the heterogeneous distribution of P availability. We also described a hierarchy of factors driving the structure and composition of the plant community: soil fertility was the most important driver, whereas calcareousness/acidity of soils and shrub cover played a secondary role; finally, N deposition contributed to explain a smaller fraction of the total variance, and its effects were predominantly negative, which was attributed to ammonium toxicity. Root phosphatase activity of three species was not responsive to N after ~2.5 years but there was a negative relationship with soil P in two of them. We conclude that increased N deposition in semiarid Mediterranean ecosystems of Europe can contribute to cause a shift in plant communities associated with an increase in the nitrophilous element and with a decline in abundance of various forb species adapted to the local conditions.
AB - Nitrogen (N) deposition is predicted to impact on the structure and functioning of Mediterranean ecosystems. In this study, we measured plant species composition, production and root phosphatase activity in a field experiment in which N (0, 10, 20 and 50 kg N ha-1 year-1) was added since October 2007 to a semiarid shrubland in central Spain. The characteristically dominant annual forb element responded negatively to N after ~2.5 and ~3.5 years. In contrast, the nitrophilous element (mainly crucifers) increased with N after ~2.5 and ~5.5 years, a response controlled by between-year variations in rainfall and the heterogeneous distribution of P availability. We also described a hierarchy of factors driving the structure and composition of the plant community: soil fertility was the most important driver, whereas calcareousness/acidity of soils and shrub cover played a secondary role; finally, N deposition contributed to explain a smaller fraction of the total variance, and its effects were predominantly negative, which was attributed to ammonium toxicity. Root phosphatase activity of three species was not responsive to N after ~2.5 years but there was a negative relationship with soil P in two of them. We conclude that increased N deposition in semiarid Mediterranean ecosystems of Europe can contribute to cause a shift in plant communities associated with an increase in the nitrophilous element and with a decline in abundance of various forb species adapted to the local conditions.
KW - Mediterranean, type ecosystems
KW - ammonium
KW - nitrogen
KW - plant ecology
KW - soil fertility
UR - http://hdl.handle.net/1959.7/uws:30693
U2 - 10.1007/s11270-014-2278-1
DO - 10.1007/s11270-014-2278-1
M3 - Article
SN - 0049-6979
VL - 226
JO - Water, Air and Soil Pollution
JF - Water, Air and Soil Pollution
IS - 2
M1 - 5
ER -