Experimental and informational modeling study on flexural strength of eco-friendly concrete incorporating coal waste

Farshad Dabbaghi, Maria Rashidi, Moncef L. Nehdi, Hamzeh Sadeghi, Mahmood Karimaei, Haleh Rasekh, Farhad Qaderi

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Construction activities have been a primary cause for depleting natural resources and are associated with stern environmental impact. Developing concrete mixture designs that meet project specifications is time-consuming, costly, and requires many trial batches and destructive tests that lead to material wastage. Computational intelligence can offer an eco-friendly alternative with superior accuracy and performance. In this study, coal waste was used as a recycled additive in concrete. The flexural strength of a large number of mixture designs was evaluated to create an experimental database. A hybrid artificial neural network (ANN) coupled with response surface methodology (RSM) was trained and employed to predict the flexural strength of coal waste-treated concrete. In this process, four influential parameters including the cement content, water-to-cement ratio, volume of gravel, and coal waste replacement level were specified as independent input variables. The results show that concrete incorporating 3% recycled coal waste could be a competitive and eco-efficient alternative in construction activities while attaining a superior flexural strength of 6.7 MPa. The RSM-modified ANN achieved superior predictive accuracy with an RMSE of 0.875. Based on the experimental results and model predictions, estimating the flexural strength of concrete incorporating waste coal using the RSM-modified ANN model yielded superior accuracy and can be used in engineering practice to save the effort, cost, and material wastage associated with trial batches and destructive laboratory testing while producing mixtures with enhanced flexural strength.
Original languageEnglish
Article number7506
Number of pages22
JournalSustainability
Volume13
Issue number13
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Experimental and informational modeling study on flexural strength of eco-friendly concrete incorporating coal waste'. Together they form a unique fingerprint.

Cite this