TY - JOUR
T1 - Feasibility of electrical impedance tomography in haemorrhagic stroke treatment using adaptive mesh
AU - Nasehi Tehrani, J.
AU - Anderson, C.
AU - Jin, C.
AU - van Schaik, A.
AU - Holder, D.
AU - McEwan, A.
PY - 2010
Y1 - 2010
N2 - EIT has been proposed for acute stroke differentiation, specifically to determine the type of stroke, either ischaemia (clot) or haemorrhage (bleed) to allow the rapid use of clot-busting drugs in the former (Romsauerova et al 2006) . This addresses an important medical need, although there is little treatment offered in the case of haemorrhage. Also the demands on EIT are high with usually no availability to take a before measurement, ruling out time difference imaging. Recently a new treatment option for haemorrhage has been proposed and is being studied in international randomised controlled trial: the early reduction of elevated blood pressure to attenuate the haematoma. This has been shown via CT to reduce bleeds by up to 1mL by Anderson et al 2008. The use of EIT as a continuous measure is desirable here to monitor the effect of blood pressure reduction. A 1mL increase of haemorrhagic lesion located near scalp on the right side of head caused a boundary voltage change of less than 0.05% at 50 kHz. This could be visually observed in a time difference 3D reconstruction with no change in electrode positions, mesh, background conductivity or drift when baseline noise was less than 0.005% but not when noise was increased to 0.01%. This useful result informs us that the EIT system must have noise of less than 0.005% at 50 kHz including instrumentation, physiological and other biases.
AB - EIT has been proposed for acute stroke differentiation, specifically to determine the type of stroke, either ischaemia (clot) or haemorrhage (bleed) to allow the rapid use of clot-busting drugs in the former (Romsauerova et al 2006) . This addresses an important medical need, although there is little treatment offered in the case of haemorrhage. Also the demands on EIT are high with usually no availability to take a before measurement, ruling out time difference imaging. Recently a new treatment option for haemorrhage has been proposed and is being studied in international randomised controlled trial: the early reduction of elevated blood pressure to attenuate the haematoma. This has been shown via CT to reduce bleeds by up to 1mL by Anderson et al 2008. The use of EIT as a continuous measure is desirable here to monitor the effect of blood pressure reduction. A 1mL increase of haemorrhagic lesion located near scalp on the right side of head caused a boundary voltage change of less than 0.05% at 50 kHz. This could be visually observed in a time difference 3D reconstruction with no change in electrode positions, mesh, background conductivity or drift when baseline noise was less than 0.005% but not when noise was increased to 0.01%. This useful result informs us that the EIT system must have noise of less than 0.005% at 50 kHz including instrumentation, physiological and other biases.
KW - electrical impedance tomography
KW - stroke
UR - http://handle.uws.edu.au:8081/1959.7/506039
U2 - 10.1088/1742-6596/224/1/012065
DO - 10.1088/1742-6596/224/1/012065
M3 - Article
SN - 1742-6588
VL - 224
SP - 12065
EP - 12068
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
ER -