Abstract
In decorated crickets, Gryllodes sigillatus, the spermatophore that a male transfers at mating includes a gelatinous spermatophylax that the female consumes, delaying her removal of the sperm-filled ampulla. Male fertilization success increases with the length of time females spend feeding on the spermatophylax, while females may benefit by prematurely discarding the spermatophylaxes of undesirable males. This sexual conflict should favour males that produce increasingly appealing spermatophylaxes, and females that resist this manipulation. To determine the genetic basis of female spermatophylax feeding behaviour, we fed spermatophylaxes to females of nine inbred lines and found that female genotype had a major influence on spermatophylax feeding duration. The amino acid composition of the spermatophylax was also significantly heritable. There was a positive genetic correlation between spermatophylax feeding duration and the gustatory appeal of the spermatophylax. This correlation suggests that genes expressed in males that produce more manipulative spermatophylaxes are positively linked to genes expressed in females that make them more vulnerable to manipulation. Outbred females spent less time feeding on spermatophylaxes than inbred females, and thus showed greater resistance to male manipulation. Further, in a nonspermatophylax producing cricket (Acheta domesticus), females were significantly more prone to feeding on spermatophylaxes than outbred female Gryllodes. Collectively, these results suggest a history of sexually antagonistic coevolution over the consumption of nuptial food gifts.
Original language | English |
---|---|
Pages (from-to) | 693-704 |
Number of pages | 12 |
Journal | Journal of Evolutionary Biology |
Volume | 26 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- crickets
- coevolution
- sex
- spermatophores