TY - JOUR
T1 - Formononetin, an isoflavone, relaxes rat isolated aorta through endothelium-dependent and endothelium-independent pathways
AU - Wu, Jian-Hong
AU - Li, Qing
AU - Wu, Min-Yi
AU - Guo, De-Jian
AU - Chen, Huan-Le
AU - Chen, Shi-Lin
AU - Seto, Sai-Wang
AU - Au, Alice L. S.
AU - Poon, Christina C. W.
AU - Leung, George P. H.
AU - Lee, Simon M. Y.
AU - Kwan, Yiu-Wa
AU - Chan, Shun-Wan
PY - 2010
Y1 - 2010
N2 - We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 μM) and methylene blue (10 μM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOSSer1177 protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 μM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 μM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 μM, an estrogen receptor (ERα/ERβ) antagonist) or mifepristone (10 μM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca2+-activated K+ (BKCa) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K+ (KATP) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BKCa and KATP channels.
AB - We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 μM) and methylene blue (10 μM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOSSer1177 protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 μM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 μM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 μM, an estrogen receptor (ERα/ERβ) antagonist) or mifepristone (10 μM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca2+-activated K+ (BKCa) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K+ (KATP) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BKCa and KATP channels.
KW - aorta
KW - genistein
KW - isoflavones
KW - nitric oxide
UR - http://handle.uws.edu.au:8081/1959.7/uws:29942
U2 - 10.1016/j.jnutbio.2009.03.010
DO - 10.1016/j.jnutbio.2009.03.010
M3 - Article
SN - 0955-2863
VL - 21
SP - 613
EP - 620
JO - Journal of Nutritional Biochemistry
JF - Journal of Nutritional Biochemistry
IS - 7
ER -