TY - JOUR
T1 - Fracture modeling of brittle biomaterials by the phase-field method
AU - Wu, Chi
AU - Fang, Jianguang
AU - Zhang, Zhongpu
AU - Entezari, Ali
AU - Sun, Guangyong
AU - Swain, Michael V.
AU - Li, Qing
PY - 2020
Y1 - 2020
N2 - Biomaterials have been extensively used in prosthetic applications for their proven biocompatibility and osseointegration characteristics. Nevertheless, one of the critical issues of some synthetic biomaterials is brittleness prone to experience fracture failure due to low tensile strength and low fracture toughness. This study aims to employ a recently-developed phase-field model to simulate the crack propagation in brittle biomaterials. Unlike discrete fracture modeling methods, the phase-field approach allows simulating crack path in a continuous manner, thereby avoiding remeshing that may not be trivial for complicated fracture surfaces and facilitate iterative procedure commonly required for structural optimization. The phase-field model is formulated to treat the fracture path as a localized region of diffusive damage that can be described in terms of a phase-field function, in which the discreteness in cracked materials is assumed to be smeared. In this study, three representative case studies from the biomedical context, namely a zirconia-based dental bridge (or namely fixed partial denture (FPD)), a ceramic tissue scaffold and an analog saw-bone femur, are employed as illustrative examples. The phase-field modeling results are compared with the in-house experimental tests, demonstrating the effectiveness of the phase-field technique for predicting brittle fracture failure in several typical biomedical case scenarios. The phase-field model provides a useful tool for the computational fracture analysis and design optimization of other brittle biomaterials.
AB - Biomaterials have been extensively used in prosthetic applications for their proven biocompatibility and osseointegration characteristics. Nevertheless, one of the critical issues of some synthetic biomaterials is brittleness prone to experience fracture failure due to low tensile strength and low fracture toughness. This study aims to employ a recently-developed phase-field model to simulate the crack propagation in brittle biomaterials. Unlike discrete fracture modeling methods, the phase-field approach allows simulating crack path in a continuous manner, thereby avoiding remeshing that may not be trivial for complicated fracture surfaces and facilitate iterative procedure commonly required for structural optimization. The phase-field model is formulated to treat the fracture path as a localized region of diffusive damage that can be described in terms of a phase-field function, in which the discreteness in cracked materials is assumed to be smeared. In this study, three representative case studies from the biomedical context, namely a zirconia-based dental bridge (or namely fixed partial denture (FPD)), a ceramic tissue scaffold and an analog saw-bone femur, are employed as illustrative examples. The phase-field modeling results are compared with the in-house experimental tests, demonstrating the effectiveness of the phase-field technique for predicting brittle fracture failure in several typical biomedical case scenarios. The phase-field model provides a useful tool for the computational fracture analysis and design optimization of other brittle biomaterials.
KW - biocompatible materials
KW - brittleness
KW - fracture mechanics
KW - mathematical models
UR - https://hdl.handle.net/1959.7/uws:54265
U2 - 10.1016/j.engfracmech.2019.106752
DO - 10.1016/j.engfracmech.2019.106752
M3 - Article
SN - 0013-7944
VL - 224
JO - Engineering Fracture Mechanics
JF - Engineering Fracture Mechanics
M1 - 106752
ER -