TY - JOUR
T1 - Functional electrical stimulation-supported interval training following sensorimotor-complete spinal cord injury : a case series
AU - Crosbie, Jack
AU - Russold, Michael
AU - Raymond, Jacqui
AU - Middleton, James W.
AU - Davis, Glen M.
PY - 2009
Y1 - 2009
N2 - Objective. To investigate the effect of interval training supported by Functional Electrical Stimulation (FES) on ambulation ability in complete spinal cord injury (SCI). Methods. We trained four men with sensorimotor-complete (ASIA A) SCI, who achieved gait through FES of the quadriceps femoris, gluteus maximus, and common peroneal nerve on each side on a motorized treadmill. Training involved progressive interval walking exercise, consisting of periods of activity followed by equal periods of rest, repeated until muscle fatigue. We used time to muscle fatigue during continuous treadmill ambulation as the primary outcome measure. We also recorded the patterns of incremental stimulation for all training and testing sessions. Results. All subjects increased their ambulation capacity; however, the responses varied from subject to subject. Some subjects increased the total distance walked by as much as 300% with progressive improvement over the entire training period; however, others made more modest gains and appeared to reach a performance plateau within a few training sessions. Conclusions. FES-supported interval training offers a useful and effective strategy for strength-endurance improvement in the large muscle groups of the lower limb in motor-complete SCI. We believe that this training protocol offers a viable alternative to that of continuous walking training in people with SCI using FES to aid ambulation.
AB - Objective. To investigate the effect of interval training supported by Functional Electrical Stimulation (FES) on ambulation ability in complete spinal cord injury (SCI). Methods. We trained four men with sensorimotor-complete (ASIA A) SCI, who achieved gait through FES of the quadriceps femoris, gluteus maximus, and common peroneal nerve on each side on a motorized treadmill. Training involved progressive interval walking exercise, consisting of periods of activity followed by equal periods of rest, repeated until muscle fatigue. We used time to muscle fatigue during continuous treadmill ambulation as the primary outcome measure. We also recorded the patterns of incremental stimulation for all training and testing sessions. Results. All subjects increased their ambulation capacity; however, the responses varied from subject to subject. Some subjects increased the total distance walked by as much as 300% with progressive improvement over the entire training period; however, others made more modest gains and appeared to reach a performance plateau within a few training sessions. Conclusions. FES-supported interval training offers a useful and effective strategy for strength-endurance improvement in the large muscle groups of the lower limb in motor-complete SCI. We believe that this training protocol offers a viable alternative to that of continuous walking training in people with SCI using FES to aid ambulation.
UR - http://handle.uws.edu.au:8081/1959.7/534878
U2 - 10.1111/j.1525-1403.2009.00219.x
DO - 10.1111/j.1525-1403.2009.00219.x
M3 - Article
SN - 1094-7159
VL - 12
SP - 224
EP - 231
JO - Neuromodulation
JF - Neuromodulation
IS - 3
ER -