TY - JOUR
T1 - Future energy-optimised buildings : addressing the impact of climate change on buildings
AU - Bamdad, Keivan
AU - Cholette, Michael E.
AU - Omrani, Sara
AU - Bell, John
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/1/15
Y1 - 2021/1/15
N2 - Building energy optimisation is generally performed under present climate conditions with fixed simulation parameters (e.g. internal loads). However, climate change and variations in simulation parameters over the building's life span may impact the optimised design. A key question is whether a particular energy-optimised design under present climate conditions would remain energy-optimised in the future. Accordingly, in this paper, a new simulation-based optimisation method is developed, which uses climate models and Ant Colony Optimisation to compare the energy-optimised designs under present and future climates. To demonstrate its potential, this method is applied to a typical office building in two Australian cities, Brisbane and Canberra. The results show that optimising under future climate conditions can lead to different optimal building designs. For Brisbane, the energy difference between optimising under present and future climate conditions is small, but in Canberra the cooling load is increased by up to 6%. This suggests that optimising the studied office building under present climate conditions is acceptable for Brisbane, while considering future climate may yield some savings in Canberra. Results also show that the energy-optimised building configuration for both future and present climates in Brisbane is less sensitive to changes in the load scenario than in Canberra.
AB - Building energy optimisation is generally performed under present climate conditions with fixed simulation parameters (e.g. internal loads). However, climate change and variations in simulation parameters over the building's life span may impact the optimised design. A key question is whether a particular energy-optimised design under present climate conditions would remain energy-optimised in the future. Accordingly, in this paper, a new simulation-based optimisation method is developed, which uses climate models and Ant Colony Optimisation to compare the energy-optimised designs under present and future climates. To demonstrate its potential, this method is applied to a typical office building in two Australian cities, Brisbane and Canberra. The results show that optimising under future climate conditions can lead to different optimal building designs. For Brisbane, the energy difference between optimising under present and future climate conditions is small, but in Canberra the cooling load is increased by up to 6%. This suggests that optimising the studied office building under present climate conditions is acceptable for Brisbane, while considering future climate may yield some savings in Canberra. Results also show that the energy-optimised building configuration for both future and present climates in Brisbane is less sensitive to changes in the load scenario than in Canberra.
UR - https://hdl.handle.net/1959.7/uws:60871
U2 - 10.1016/j.enbuild.2020.110610
DO - 10.1016/j.enbuild.2020.110610
M3 - Article
SN - 0378-7788
VL - 231
JO - Energy and Buildings
JF - Energy and Buildings
M1 - 110610
ER -