TY - JOUR
T1 - Galaxy And Mass Assembly (GAMA) : understanding the wavelength dependence of galaxy structure with bulge-disc decompositions
AU - Kennedy, Rebecca
AU - Bamford, Steven P.
AU - Häußler, Boris
AU - Baldry, Ivan
AU - Bremer, Malcolm
AU - Brough, Sarah
AU - Brown, Michael J. I.
AU - Driver, Simon
AU - Duncan, Kenneth
AU - Graham, Alister W.
AU - Holwerda, Benne W.
AU - Hopkins, Andrew M.
AU - Kelvin, Lee S.
AU - Lange, Rebecca
AU - Phillipps, Steven
AU - Vika, Marina
AU - Vulcani, Benedetta
PY - 2016
Y1 - 2016
N2 - With a large sample of bright, low-redshift galaxies with optical–near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behaviour of single-Sersic structural measurements. We denote the variation in single-S ´ ersic ´ index with wavelength as N , likewise for effective radius we use R. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of N . The increase in Sersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of R (< 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. We even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.
AB - With a large sample of bright, low-redshift galaxies with optical–near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behaviour of single-Sersic structural measurements. We denote the variation in single-S ´ ersic ´ index with wavelength as N , likewise for effective radius we use R. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of N . The increase in Sersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of R (< 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. We even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.
UR - https://hdl.handle.net/1959.7/uws:65999
U2 - 10.1093/mnras/stw1176
DO - 10.1093/mnras/stw1176
M3 - Article
SN - 0035-8711
VL - 460
SP - 3458
EP - 3471
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -