TY - JOUR
T1 - Generalized fuzzy hypergraph for link prediction and identification of influencers in dynamic social media networks
AU - Firouzkouhi, Narjes
AU - Amini, Abbas
AU - Bani-Mustafa, Ahmed
AU - Mehdizadeh, Arash
AU - Damrah, Sadeq
AU - Gholami, Ahmad
AU - Cheng, Chun
AU - Davvaz, Bijan
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2024
Y1 - 2024
N2 - Despite the importance of link prediction and identification of influencers in dynamic social media systems, the existing methodical theories are not capable of analyzing complex multilayer relations in social media networks which contain uncertainty. In fact, there is no theoretical exploration concurrently focused on multidimensional and interrelated entities in a fuzzy-based social media environment. To cover this gap, a neoteric generalized fuzzy hypergraph (GFH) methodology is designed using developed n-ary fuzzy relation technique that is the extension of convolutional binary fuzzy relation. Characterizing reflexive, symmetric, transitive, composition, t-cut and support techniques is carried out for multidimensional uncertain-based space. Also, a graphical approach is created in the generalized fuzzy hypergraph to assist the derivation of foundational implications and concepts. The GFH framework can be applied for the intelligent management of complex systems for sole or mass users of local and global social media platforms by adopting specific membership degree for each individual. To predict the linkages between elements, a fuzzy-based indicator FLP (fuzzy link prediction) is promoted, along with the indicator of SIR (score of interaction rate) to identify the influencers (strongest communicators) in an uncertain space. Through the FLP evaluation, the extracted data are analyzed as per the highest value of 1 for single, 3 for binary, 3.8 for triplet, and 0.9 for quaternary spaces for their probable links. Through the analysis of SIR data on the individuals' membership degrees for the usage of social media platforms, the highest interaction value of 0.99 is correlated to a single member, while 5.42 magnitude addresses an influential person. The performance results show that the presented theoretical and structural approach, that is superior to the classical graph theories, is promising to configure intelligent expert systems, predict the likelihood of connections, detect communities, and specify the influencers in real social media platforms that contain uncertainty.
AB - Despite the importance of link prediction and identification of influencers in dynamic social media systems, the existing methodical theories are not capable of analyzing complex multilayer relations in social media networks which contain uncertainty. In fact, there is no theoretical exploration concurrently focused on multidimensional and interrelated entities in a fuzzy-based social media environment. To cover this gap, a neoteric generalized fuzzy hypergraph (GFH) methodology is designed using developed n-ary fuzzy relation technique that is the extension of convolutional binary fuzzy relation. Characterizing reflexive, symmetric, transitive, composition, t-cut and support techniques is carried out for multidimensional uncertain-based space. Also, a graphical approach is created in the generalized fuzzy hypergraph to assist the derivation of foundational implications and concepts. The GFH framework can be applied for the intelligent management of complex systems for sole or mass users of local and global social media platforms by adopting specific membership degree for each individual. To predict the linkages between elements, a fuzzy-based indicator FLP (fuzzy link prediction) is promoted, along with the indicator of SIR (score of interaction rate) to identify the influencers (strongest communicators) in an uncertain space. Through the FLP evaluation, the extracted data are analyzed as per the highest value of 1 for single, 3 for binary, 3.8 for triplet, and 0.9 for quaternary spaces for their probable links. Through the analysis of SIR data on the individuals' membership degrees for the usage of social media platforms, the highest interaction value of 0.99 is correlated to a single member, while 5.42 magnitude addresses an influential person. The performance results show that the presented theoretical and structural approach, that is superior to the classical graph theories, is promising to configure intelligent expert systems, predict the likelihood of connections, detect communities, and specify the influencers in real social media platforms that contain uncertainty.
KW - Fuzzy hypergraph
KW - Fuzzy relation
KW - Intelligent system
KW - Link prediction
KW - Social influencing analysis
KW - Social media network
UR - http://www.scopus.com/inward/record.url?scp=85173184999&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2023.121736
DO - 10.1016/j.eswa.2023.121736
M3 - Article
AN - SCOPUS:85173184999
SN - 0957-4174
VL - 238
JO - Expert Systems with Applications
JF - Expert Systems with Applications
IS - Part A
M1 - 121736
ER -