TY - JOUR
T1 - Genetic population structure of the ectomycorrhizal fungus Pisolithus microcarpus suggests high gene flow in south-eastern Australia
AU - Hitchcock, Catherine J.
AU - Chambers, Susan M.
AU - Cairney, John W. G.
PY - 2011
Y1 - 2011
N2 - Pisolithus are ectomycorrhizal fungi that associate with roots of numerous plant species in natural and plantation forests worldwide. Despite the fact that Pisolithus spp. are present in plantation forests in many countries, knowledge of the genetic population structure of Pisolithus spp. remains limited. In this study, we have tested the hypothesis that a propensity for long-distance spore dispersal in Pisolithus microcarpus, along with the widespread distribution of potential eucalypt and acacia plant hosts in south-eastern Australia facilitates gene flow that limits population differentiation. Five polymorphic simple sequence repeat markers were used to investigate the population structure of P. microcarpus. Isolates were grouped according to geographical origin and isolate genotypes were analysed among the geographical populations. Pairwise F ST estimates indicated limited genetic differentiation among the geographical populations. Analysis of molecular variance revealed that most of the genetic variation present was within geographical populations, with only 1.3% of the genetic variation among P. microcarpus geographical populations. This was particularly pronounced for four geographical populations within a ca 7,000 km2 area New South Wales, which were each separated by < 100 km and appeared to be genetically homogeneous. The lack of population structure is suggested to be due to a high degree of gene flow, via basidiospores, between the New South Wales geographical populations.
AB - Pisolithus are ectomycorrhizal fungi that associate with roots of numerous plant species in natural and plantation forests worldwide. Despite the fact that Pisolithus spp. are present in plantation forests in many countries, knowledge of the genetic population structure of Pisolithus spp. remains limited. In this study, we have tested the hypothesis that a propensity for long-distance spore dispersal in Pisolithus microcarpus, along with the widespread distribution of potential eucalypt and acacia plant hosts in south-eastern Australia facilitates gene flow that limits population differentiation. Five polymorphic simple sequence repeat markers were used to investigate the population structure of P. microcarpus. Isolates were grouped according to geographical origin and isolate genotypes were analysed among the geographical populations. Pairwise F ST estimates indicated limited genetic differentiation among the geographical populations. Analysis of molecular variance revealed that most of the genetic variation present was within geographical populations, with only 1.3% of the genetic variation among P. microcarpus geographical populations. This was particularly pronounced for four geographical populations within a ca 7,000 km2 area New South Wales, which were each separated by < 100 km and appeared to be genetically homogeneous. The lack of population structure is suggested to be due to a high degree of gene flow, via basidiospores, between the New South Wales geographical populations.
KW - Pisolithus
KW - ectomycorrhizal fungi
KW - genetics
KW - microsatellites (genetics)
KW - spores
UR - http://handle.uws.edu.au:8081/1959.7/510563
M3 - Article
SN - 1432-1890
SN - 0940-6360
JO - Mycorrhiza
JF - Mycorrhiza
ER -