TY - JOUR
T1 - Host identity determines plant associated resistomes
AU - Chen, Qing-Lin
AU - Hu, Hang-Wei
AU - Zhu, Dong
AU - Ding, Jing
AU - Yan, Zhen-Zhen
AU - He, Ji-Zheng
AU - Zhu, Yong-Guan
PY - 2020
Y1 - 2020
N2 - Plant microbiome, as the second genome of plant, and the interface between human and environmental microbiome, represents a potential pathway of human exposure to environmental pathogens and resistomes. However, the impact of host identity on the profile of resistomes in plant phyllosphere is unclear and this knowledge is vital for establishing a framework to evaluate the dissemination of antibiotic resistance via the plant microbiome. Here, we explored the phyllosphere microbiome and resistomes in 12 selected plant species. By using High-throughput quantitative PCR, we identified a total of 172 unique resistance genes in plant phyllosphere microbiome, which was significantly divergent from the profile of resistomes in associated soils (Adonis, P < 0.01). Host identity had a significant effect on the plant resistome, which was mainly attributed to the dissimilarity of phyllosphere bacterial phylogeny across different plants. We identified a core set of plant resistomes shared in more than 80% of samples, which accounted for more than 64% of total resistance genes. These plant core resistomes conferred resistance to antibiotics that are commonly administered to humans and animals. Our findings extend our knowledge regarding the resistomes in plant phyllosphere microbiome and highlight the role of host identity in shaping the plant associated antibiotic resistance genes.
AB - Plant microbiome, as the second genome of plant, and the interface between human and environmental microbiome, represents a potential pathway of human exposure to environmental pathogens and resistomes. However, the impact of host identity on the profile of resistomes in plant phyllosphere is unclear and this knowledge is vital for establishing a framework to evaluate the dissemination of antibiotic resistance via the plant microbiome. Here, we explored the phyllosphere microbiome and resistomes in 12 selected plant species. By using High-throughput quantitative PCR, we identified a total of 172 unique resistance genes in plant phyllosphere microbiome, which was significantly divergent from the profile of resistomes in associated soils (Adonis, P < 0.01). Host identity had a significant effect on the plant resistome, which was mainly attributed to the dissimilarity of phyllosphere bacterial phylogeny across different plants. We identified a core set of plant resistomes shared in more than 80% of samples, which accounted for more than 64% of total resistance genes. These plant core resistomes conferred resistance to antibiotics that are commonly administered to humans and animals. Our findings extend our knowledge regarding the resistomes in plant phyllosphere microbiome and highlight the role of host identity in shaping the plant associated antibiotic resistance genes.
UR - https://hdl.handle.net/1959.7/uws:62317
U2 - 10.1016/j.envpol.2019.113709
DO - 10.1016/j.envpol.2019.113709
M3 - Article
SN - 0269-7491
VL - 258
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 113709
ER -