Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems

Rifai Chai, Ganesh R. Naik, Sai Ho Ling, Hung T. Nguyen

Research output: Contribution to journalArticlepeer-review

Abstract

Background: One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. Methods: This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Results: Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s. © 2017 The Author(s).
Original languageEnglish
Article number5
Number of pages23
JournalBioMedical Engineering OnLine
Volume16
Issue number1
DOIs
Publication statusPublished - 2017

Open Access - Access Right Statement

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fingerprint

Dive into the research topics of 'Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems'. Together they form a unique fingerprint.

Cite this