Hydrodynamic performance of a floating offshore oscillating water column wave energy converter

Mohammad Rashed Mia, Ming Zhao, Helen Wu, Vatsal Dhamelia, Pan Hu

Research output: Contribution to journalArticlepeer-review

Abstract

A floating oscillating water column (OWC) wave energy converter (WEC) supported by mooring lines can be modelled as an elastically supported OWC. The main objective of this paper is to investigate the effects of the frequency ratio on the performance of floating OWC (oscillating water column) devices that oscillate either vertically or horizontally at two different mass ratios (m = 2 and 3) through two-dimensional computational fluid dynamics simulations. The frequency ratio is the ratio of the natural frequency of the system to the wave frequency. Simulations are conducted for nine frequency ratios in the range between 1 and 10. The hydrodynamic efficiency achieves its maximum at the smallest frequency ratio of 1 if the OWC oscillates horizontally and at the largest frequency ratio of 10 if the OWC oscillates vertically. The frequency ratio affects the hydraulic efficiency of the vertical oscillating OWC significantly stronger than that of the horizontal oscillating OWC, especially when it is small. The air pressure and the volume oscillation in OWC is not affected much by the horizontal motion of the OWC but is significantly affected by the vertical motion, especially at small frequency ratios.
Original languageEnglish
Article number1551
Number of pages16
JournalJournal of Marine Science and Engineering
Volume10
Issue number10
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Hydrodynamic performance of a floating offshore oscillating water column wave energy converter'. Together they form a unique fingerprint.

Cite this