Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics

Barbara Drigo, George A. Kowalchuk, Brigitte A. Knapp, Agata S. Pijl, Henricus T. S. Boschker, Johannes A. van Veen

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by C-13 pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the C-13 enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.
    Original languageEnglish
    Pages (from-to)621-636
    Number of pages16
    JournalGlobal Change Biology
    Volume19
    Issue number2
    DOIs
    Publication statusPublished - 2013

    Keywords

    • bacterial communities
    • carbon dioxide
    • carex arenaria
    • festuca rubra
    • fungal communities
    • mycorrhizal fungi
    • rhizosphere

    Fingerprint

    Dive into the research topics of 'Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics'. Together they form a unique fingerprint.

    Cite this