In-plane stability of arches

Yong Lin Pi, M. A. Bradford, Brian Uy

    Research output: Contribution to journalArticle

    Abstract

    Classical buckling theory is mostly used to investigate the in-plane stability of arches, which assumes that the pre-buckling behaviour is linear and that the effects of pre-buckling deformations on buckling can be ignored. However, the behaviour of shallow arches becomes non-linear and the deformations are substantial prior to buckling, so that their effects on the buckling of shallow arches need to be considered. Classical buckling theory which does not consider these effects cannot correctly predict the in-plane buckling load of shallow arches. This paper investigates the in-plane buckling of circular arches with an arbitrary cross-section and subjected to a radial load uniformly distributed around the arch axis. An energy method is used to establish both non-linear equilibrium equations and buckling equilibrium equations for shallow arches. Analytical solutions for the in-plane buckling loads of shallow arches subjected to this loading regime are obtained. Approximations to the symmetric buckling of shallow arches and formulae for the in-plane anti-symmetric bifurcation buckling load of non-shallow arches are proposed, and criteria that define shallow and non-shallow arches are also stated. Comparisons with finite element results demonstrate that the solutions and indeed approximations are accurate, and that classical buckling theory can correctly predict the in-plane anti-symmetric bifurcation buckling load of non-shallow arches, but overestimates the in-plane anti-symmetric bifurcation buckling load of shallow arches significantly.
    Original languageEnglish
    JournalInternational Journal of Solids and Structures
    Publication statusPublished - 2002

    Keywords

    • buckling (mechanics)
    • bifurcation
    • arches

    Fingerprint

    Dive into the research topics of 'In-plane stability of arches'. Together they form a unique fingerprint.

    Cite this