[In Press] Predicting sub-continental fuel hazard under future climate and rising atmospheric CO2 concentration

Jinyan Yang, Lina Teckentrup, Assaf Inbar, Jürgen Knauer, Mingkai Jiang, Belinda Medlyn, Owen Price, Ross Bradstock, Matthias M. Boer

Research output: Contribution to journalArticlepeer-review

Abstract

Bushfire fuel hazard is determined by the type, amount, density and three-dimensional distribution of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in the future with plant growth patterns. Rising atmospheric CO2 concentration (Ca) stimulates plant productivity (‘fertilisation effect’) but also alters climate, leading to a ‘climatic effect’. Both effects have impacts on future vegetation and thus fuel hazard. Quantifying these effects is an important component of predicting future fire regimes and evaluating fire management options. Here, we combined a machine learning algorithm that incorporates the power of large fine spatial resolution (i.e. 90 m) datasets with a novel optimality model that accounts for the climatic and fertilisation effects on vegetation cover. We demonstrated the usefulness and practicality of this framework by predicting fuel hazard across the state of Victoria in Australia. We fitted and evaluated the models with long-term (i.e. 20 years), ground-based fuel observations. The models achieved strong agreement with observations across the fuel hazard range (accuracy >65%). We found fuel hazard increased more in dry environments due to future climate and Ca. The contribution of the ‘fertilisation effect’ to future fuel hazard varied spatially by up to 12%. The predictions of future fuel hazard are directly useful to inform fire mitigation policies and as a reference for climate model projections to account for fire impacts. Synthesis and applications: Climate change and rising Ca have profound impacts on vegetation and thus fuel load. Operational fire management and future fire risk forecasts will benefit from our realistic fuel load prediction framework that incorporates plant responses and fine soil and terrain attributes.
Original languageEnglish
Number of pages14
JournalJournal of Applied Ecology
DOIs
Publication statusPublished - 2023

Open Access - Access Right Statement

© 2023 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Fingerprint

Dive into the research topics of '[In Press] Predicting sub-continental fuel hazard under future climate and rising atmospheric CO2 concentration'. Together they form a unique fingerprint.

Cite this