TY - JOUR
T1 - In vivo recordings from the human vagus nerve using ultrasound-guided microneurography
AU - Ottaviani, Matteo M.
AU - Wright, Leah
AU - Dawood, Tye
AU - Macefield, Vaughan G.
PY - 2020
Y1 - 2020
N2 - Intraneural microelectrodes have been used extensively to record from single somatosensory axons supplying muscle, tendons, joints and skin, as well as to record from postganglionic sympathetic axons supplying muscle and skin, in accessible peripheral nerves in awake humans. However, the vagus nerve has never been targeted, probably because of its close proximity to the carotid artery and jugular vein in the neck. Here, we report the first unitary recordings from the human cervical vagus nerve, obtained using ultrasound-guided insertion of tungsten microelectrodes into fascicles of the nerve. We identified tonically-active neurones in which firing rates were inversely related to heart rate (and directly related to the cardiac interval), which we classified as putative preganglionic parasympathetic axons directed to the sinoatrial node of the heart. We also recorded from tonically-active presumed sensory axons from the airways and presumed motor axons to the larynx. This new methodology opens exciting new opportunities for studying the physiology of the human vagus nerve in health and disease.
AB - Intraneural microelectrodes have been used extensively to record from single somatosensory axons supplying muscle, tendons, joints and skin, as well as to record from postganglionic sympathetic axons supplying muscle and skin, in accessible peripheral nerves in awake humans. However, the vagus nerve has never been targeted, probably because of its close proximity to the carotid artery and jugular vein in the neck. Here, we report the first unitary recordings from the human cervical vagus nerve, obtained using ultrasound-guided insertion of tungsten microelectrodes into fascicles of the nerve. We identified tonically-active neurones in which firing rates were inversely related to heart rate (and directly related to the cardiac interval), which we classified as putative preganglionic parasympathetic axons directed to the sinoatrial node of the heart. We also recorded from tonically-active presumed sensory axons from the airways and presumed motor axons to the larynx. This new methodology opens exciting new opportunities for studying the physiology of the human vagus nerve in health and disease.
UR - https://hdl.handle.net/1959.7/uws:60119
U2 - 10.1113/JP280077
DO - 10.1113/JP280077
M3 - Article
SN - 0022-3751
VL - 598
SP - 3569
EP - 3576
JO - Journal of Physiology
JF - Journal of Physiology
IS - 17
ER -