Insulin micro-secretion in Type 1 diabetes and related microRNA profiles

Andrzej S. Januszewski, Yoon Hi Cho, Mugdha V. Joglekar, Ryan J. Farr, Emma S. Scott, Wilson K. M. Wong, Luke M. Carroll, Yik W. Loh, Paul Z. Benitez-Aguirre, Anthony C. Keech, David N. O'Neal, Maria E. Craig, Anandwardhan A. Harkidar, Kim C. Donaghue, Alicia J. Jenkins

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

The aim of this cross-sectional study was to compare plasma C-peptide presence and levels in people without diabetes (CON) and with Type 1 diabetes and relate C-peptide status to clinical factors. In a subset we evaluated 50 microRNAs (miRs) previously implicated in beta-cell death and associations with clinical status and C-peptide levels. Diabetes age of onset was stratified as adult (≥ 18 y.o) or childhood ( 20 years. Plasma C-peptide was measured by ultrasensitive ELISA. Plasma miRs were quantified using TaqMan probe-primer mix on an OpenArray platform. C-peptide was detectable in 55.3% of (n= 349) people with diabetes, including 64.1% of adults and 34.0% of youth with diabetes, p < 0.0001 and in all (n= 253) participants without diabetes (CON). C-peptide levels, when detectable, were lower in the individuals with diabetes than in the CON group [median lower quartile (LQ)–upper quartile (UQ)] 5.0 (2.6–28.7) versus 650.9 (401.2–732.4) pmol/L respectively, p < 0.0001 and lower in childhood versus adult-onset diabetes [median (LQ–UQ) 4.2 (2.6–12.2) pmol/L vs. 8.0 (2.3–80.5) pmol/L, p = 0.02, respectively]. In the childhood-onset group more people with longer diabetes duration (>20 years) had detectable C-peptide (60%) than in those with shorter diabetes duration (39%, p for trend< 0.05). Nine miRs significantly correlated with detectable C-peptide levels in people with diabetes and 16 miRs correlated with C-peptide levels in CON. Our cross-sectional study results are supportive of (a) greater beta-cell function loss in younger onset Type 1 diabetes; (b) persistent insulin secretion in adult-onset diabetes and possibly regenerative secretion in childhood-onset long diabetes duration; and (c) relationships of C-peptide levels with circulating miRs. Confirmatory clinical studies and related basic science studies are merited.
Original languageEnglish
Article number11727
Number of pages11
JournalScientific Reports
Volume11
Issue number1
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

Tis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Insulin micro-secretion in Type 1 diabetes and related microRNA profiles'. Together they form a unique fingerprint.

Cite this