TY - JOUR
T1 - Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties
AU - Swaminathan, Sanjay
AU - Hu, Xiaojun
AU - Zheng, Xin
AU - Kriga, Yuliya
AU - Shetty, Jyoti
AU - Zhao, Yongmei
AU - Stephens, Robert
AU - Tran, Bao
AU - Baseler, Michael W.
AU - Yang, Jun
AU - Lempicki, Richard A.
AU - Huang, Dawei
AU - Lane, H. Clifford
AU - Imamichi, Tomozumi
PY - 2013
Y1 - 2013
N2 - Interleukin-27 (IL-27) is a pleiotropic cytokine which plays important and diverse roles in the immune system. We have previously demonstrated that IL-27 induces potent anti-viral effects against HIV-1, HIV-2, SIV, HSV-2, KSHV and influenza viruses in macrophages. This induction occurred in an interferon (IFN) independent manner and involved down regulation of SPTBN1. MicroRNAs (miRNAs) are critical regulators of mRNA translation and turnover. There have been reports that some miRNAs inhibit viral replication. In this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity and primary monocytes were differentiated into macrophages using either M-CSF (M-Mac) or a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in these macrophages. Four of which were preferentially expressed in I-Mac (miR-SX1, -SX2, -SX3 and -SX6) whilst three were detected in both M-Mac and I-Mac (miR-SX4, -SX5 and -SX7). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs. Finally, several of these novel miRNAs (miR-SX1, -SX4, -SX5, -SX6 and -SX7) were shown to target the open reading frames of a number of viruses (including HSV-1, HSV-2 and HHV-8) which may partially explain the anti-viral properties observed.
AB - Interleukin-27 (IL-27) is a pleiotropic cytokine which plays important and diverse roles in the immune system. We have previously demonstrated that IL-27 induces potent anti-viral effects against HIV-1, HIV-2, SIV, HSV-2, KSHV and influenza viruses in macrophages. This induction occurred in an interferon (IFN) independent manner and involved down regulation of SPTBN1. MicroRNAs (miRNAs) are critical regulators of mRNA translation and turnover. There have been reports that some miRNAs inhibit viral replication. In this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity and primary monocytes were differentiated into macrophages using either M-CSF (M-Mac) or a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in these macrophages. Four of which were preferentially expressed in I-Mac (miR-SX1, -SX2, -SX3 and -SX6) whilst three were detected in both M-Mac and I-Mac (miR-SX4, -SX5 and -SX7). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs. Finally, several of these novel miRNAs (miR-SX1, -SX4, -SX5, -SX6 and -SX7) were shown to target the open reading frames of a number of viruses (including HSV-1, HSV-2 and HHV-8) which may partially explain the anti-viral properties observed.
KW - cytokines
KW - interleukins
KW - macrophages
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:52345
U2 - 10.1016/j.bbrc.2013.03.046
DO - 10.1016/j.bbrc.2013.03.046
M3 - Article
SN - 0006-291X
VL - 434
SP - 228
EP - 234
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 2
ER -