Intrinsic sensing properties of chrysotile fiber reinforced piezoelectric cement-based composites

Jianlin Luo, Chunwei Zhang, Lu Li, Baolin Wang, Qiuyi Li, Kwok L. Chung, Chao Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Lead-zirconate-titanate (PZT) nanoscale powder was first synthesized by the sol-gel method, then PZT and 0–3 type PZT/chrysotile fiber (CSF)/cement composite (PZTCC) wafers were fabricated after grind-mixing PZT powder with strontium carbonate and/or cement, ductile CSF in tandem with press-sintered process, respectively. The crystal structure (XRD), microstructure (SEM), piezoelectric properties after surface silver penetration, and polarization of the PZT and PZTCC wafer were investigated. Furthermore, self-sensing responses under either impulse or cyclic loading and micro-hardness toughness of PZTCC were also investigated. Results show that the incorporation of CSF and cement admixture weakens the perovskite crystalline peak of PZTCC; reduces the corresponding piezoelectric coefficient from 119.2 pC/N to 32.5 pC/N; but effectively bridges the gap on the toughness between PZTCC and concrete since the corresponding microhardness with 202.7 MPa of PZTCC is close to that of concrete. A good linear and fast electrical response against either impulse or cyclic loading of the PZTCC is achieved with their respective sensitivity, linearity, and repeatability to 1.505 mV/N, 2.42%, and 2.11%. The sensing responses and toughness of PZTCC is encouraging as an intrinsic piezoelectric sensor for real-time health monitoring of ductile concrete structures.
Original languageEnglish
Article number2999
Number of pages10
JournalSensors
Volume18
Issue number9
DOIs
Publication statusPublished - 2018

Open Access - Access Right Statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Keywords

  • chrysotile
  • detectors
  • fiber-reinforced concrete
  • piezoelectric materials
  • structural health monitoring

Fingerprint

Dive into the research topics of 'Intrinsic sensing properties of chrysotile fiber reinforced piezoelectric cement-based composites'. Together they form a unique fingerprint.

Cite this