Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

J. N. Young, A. M. C. Heureux, Robert E. Sharwood, R. E. M. Rickaby, F. M. M. Morel, S. M. Whitney

Research output: Contribution to journalArticlepeer-review

158 Citations (Scopus)

Abstract

While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23-68 μM), SC/O (57-116mol mol-1), and K O (413-2032 μM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1-3.7s-1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily.
Original languageEnglish
Pages (from-to)3445-3456
Number of pages12
JournalJournal of Experimental Botany
Volume67
Issue number11
DOIs
Publication statusPublished - 2016

Open Access - Access Right Statement

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Fingerprint

Dive into the research topics of 'Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms'. Together they form a unique fingerprint.

Cite this