TY - JOUR
T1 - Light and nitrogen nutrition regulate apical control in Rosa hybrida L.
AU - Furet, Pierre-Maxime
AU - Lothier, Jeremy
AU - Demotes-Mainard, Sabine
AU - Travier, Sandrine
AU - Henry, Clemence
AU - Guerin, Vincent
AU - Vian, Alain
PY - 2014
Y1 - 2014
N2 - Apical control is defined as the inhibition of basal axillary bud outgrowth by an upper actively growing axillary axis, whose regulation is poorly understood yet differs markedly from the better-known apical dominance. We studied the regulation of apical control by environmental factors in decapitated Rosa hybrida in order to remove the apical hormonal influence and nutrient sink. In this plant model, all the buds along the main axis have a similar morphology and are able to burst in vitro. We concentrated on the involvement of light intensity and nitrate nutrition on bud break and axillary bud elongation in the primary axis pruned above the fifth leaf of each rose bush. We observed that apical control took place in low light (92 μmol m−2 s−1), where only the 2-apical buds grew out, both in low (0.25 mM) and high (12.25 mM) nitrate. In contrast, in high light (453 μmol m−2 s−1), the apical control only operates in low nitrate while all the buds along the stem grew out when the plant was supplied with a high level of nitrate. We found a decreasing photosynthetic activity from the top to the base of the plant concomitant with a light gradient along the stem. The quantity of sucrose, fructose, glucose and starch are higher in high light conditions in leaves and stem. The expression of the sucrose transporter RhSUC2 was higher in internodes and buds in this lighting condition, suggesting an increased capacity for sucrose transport. We propose that light intensity and nitrogen availability both contribute to the establishment of apical control.
AB - Apical control is defined as the inhibition of basal axillary bud outgrowth by an upper actively growing axillary axis, whose regulation is poorly understood yet differs markedly from the better-known apical dominance. We studied the regulation of apical control by environmental factors in decapitated Rosa hybrida in order to remove the apical hormonal influence and nutrient sink. In this plant model, all the buds along the main axis have a similar morphology and are able to burst in vitro. We concentrated on the involvement of light intensity and nitrate nutrition on bud break and axillary bud elongation in the primary axis pruned above the fifth leaf of each rose bush. We observed that apical control took place in low light (92 μmol m−2 s−1), where only the 2-apical buds grew out, both in low (0.25 mM) and high (12.25 mM) nitrate. In contrast, in high light (453 μmol m−2 s−1), the apical control only operates in low nitrate while all the buds along the stem grew out when the plant was supplied with a high level of nitrate. We found a decreasing photosynthetic activity from the top to the base of the plant concomitant with a light gradient along the stem. The quantity of sucrose, fructose, glucose and starch are higher in high light conditions in leaves and stem. The expression of the sucrose transporter RhSUC2 was higher in internodes and buds in this lighting condition, suggesting an increased capacity for sucrose transport. We propose that light intensity and nitrogen availability both contribute to the establishment of apical control.
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:41687
U2 - 10.1016/j.jplph.2013.10.008
DO - 10.1016/j.jplph.2013.10.008
M3 - Article
SN - 0176-1617
VL - 171
SP - 7
EP - 13
JO - Journal of Plant Physiology
JF - Journal of Plant Physiology
IS - 5
ER -