TY - JOUR
T1 - Limb-specific muscle sympathetic nerve activity responses to the cold pressor test
AU - Coovadia, Y.
AU - Schwende, B. K.
AU - Taylor, Chloe E.
AU - Usselman, C. W.
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/2
Y1 - 2024/2
N2 - Recent studies have demonstrated that muscle sympathetic nerve activity (MSNA) responses to isometric exercise differs between active and inactive limbs. Whether limb-dependent responses are characteristic of responses to the cold pressor test (CPT) remains to be established. Therefore, we tested the hypothesis that CPT-induced MSNA responses differ between affected and unaffected limbs such that MSNA in the affected lower limb is greater than MSNA responses in the contralateral lower limb and the upper limb. Integrated peroneal MSNA (microneurography) was measured in young healthy individuals (n = 10) at rest and during three separate 3-min CPTs: the microneurography foot, opposite foot, and opposite hand. Peak MSNA responses were extracted for further analysis, as well as corresponding hemodynamic outcomes including mean arterial pressure (MAP; Finometer). MSNA responses were greater when the microneurography foot was immersed in ice water than when the opposite foot was immersed (38 ± 18 vs 28 ± 16 bursts/100hb: P < 0.01). MSNA responses when the opposite hand was immersed were greater than both the microneurography foot (46 ± 22 vs 38 ± 18 bursts/100hb: P < 0.01) and opposite foot (46 ± 22 vs 28 ± 16 bursts/100hb: P ≤0.01). Likewise, MAP responses were greater during the hand CPT than the microneurography foot (99 ± 9 vs 96 ± 8 mmHg: P < 0.01) and opposite foot CPT (99 ± 9 vs 96 ± 9 mmHg: P < 0.01). These data indicate that (a) upper limbs and (b) immersed limbs elicit greater MSNA responses to the CPT than lower and/or non-immersed limbs.
AB - Recent studies have demonstrated that muscle sympathetic nerve activity (MSNA) responses to isometric exercise differs between active and inactive limbs. Whether limb-dependent responses are characteristic of responses to the cold pressor test (CPT) remains to be established. Therefore, we tested the hypothesis that CPT-induced MSNA responses differ between affected and unaffected limbs such that MSNA in the affected lower limb is greater than MSNA responses in the contralateral lower limb and the upper limb. Integrated peroneal MSNA (microneurography) was measured in young healthy individuals (n = 10) at rest and during three separate 3-min CPTs: the microneurography foot, opposite foot, and opposite hand. Peak MSNA responses were extracted for further analysis, as well as corresponding hemodynamic outcomes including mean arterial pressure (MAP; Finometer). MSNA responses were greater when the microneurography foot was immersed in ice water than when the opposite foot was immersed (38 ± 18 vs 28 ± 16 bursts/100hb: P < 0.01). MSNA responses when the opposite hand was immersed were greater than both the microneurography foot (46 ± 22 vs 38 ± 18 bursts/100hb: P < 0.01) and opposite foot (46 ± 22 vs 28 ± 16 bursts/100hb: P ≤0.01). Likewise, MAP responses were greater during the hand CPT than the microneurography foot (99 ± 9 vs 96 ± 8 mmHg: P < 0.01) and opposite foot CPT (99 ± 9 vs 96 ± 9 mmHg: P < 0.01). These data indicate that (a) upper limbs and (b) immersed limbs elicit greater MSNA responses to the CPT than lower and/or non-immersed limbs.
UR - https://hdl.handle.net/1959.7/uws:76269
U2 - 10.1016/j.autneu.2023.103146
DO - 10.1016/j.autneu.2023.103146
M3 - Article
SN - 1566-0702
VL - 251
JO - Autonomic Neuroscience: Basic and Clinical
JF - Autonomic Neuroscience: Basic and Clinical
M1 - 103146
ER -