TY - JOUR
T1 - Living Earth : implementing national standardised land cover classification systems for Earth Observation in support of sustainable development
AU - Owers, Christopher J.
AU - Lucas, Richard M.
AU - Clewley, Daniel
AU - Planque, Carole
AU - Punalekar, Suvarna
AU - Tissott, Belle
AU - Chua, Sean M. T.
AU - Bunting, Pete
AU - Mueller, Norman
AU - Metternicht, Graciela
PY - 2021
Y1 - 2021
N2 - Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national agencies tasked with coordinating the implementation of SDGs. Reliable, standardised, scalable mapping of land cover and its change over time and space facilitates informed decision making, providing cohesive methods for target setting and reporting of SDGs. The aim of this study was to implement a global framework for classifying land cover. The Food and Agriculture Organisation’s Land Cover Classification System (FAO LCCS) provides a global land cover taxonomy suitable to comprehensively support SDG target setting and reporting. We present a fully implemented FAO LCCS optimised for EO data; Living Earth, an open-source software package that can be readily applied using existing national EO infrastructure and satellite data. We resolve several semantic challenges of LCCS for consistent EO implementation, including modifications to environmental descriptors, inter-dependency within the modular-hierarchical framework, and increased flexibility associated with limited data availability. To ensure easy adoption of Living Earth for SDG reporting, we identified key environmental descriptors to provide resource allocation recommendations for generating routinely retrieved input parameters. Living Earth provides an optimal platform for global adoption of EO4SDGs ensuring a transparent methodology that allows monitoring to be standardised for all countries.
AB - Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national agencies tasked with coordinating the implementation of SDGs. Reliable, standardised, scalable mapping of land cover and its change over time and space facilitates informed decision making, providing cohesive methods for target setting and reporting of SDGs. The aim of this study was to implement a global framework for classifying land cover. The Food and Agriculture Organisation’s Land Cover Classification System (FAO LCCS) provides a global land cover taxonomy suitable to comprehensively support SDG target setting and reporting. We present a fully implemented FAO LCCS optimised for EO data; Living Earth, an open-source software package that can be readily applied using existing national EO infrastructure and satellite data. We resolve several semantic challenges of LCCS for consistent EO implementation, including modifications to environmental descriptors, inter-dependency within the modular-hierarchical framework, and increased flexibility associated with limited data availability. To ensure easy adoption of Living Earth for SDG reporting, we identified key environmental descriptors to provide resource allocation recommendations for generating routinely retrieved input parameters. Living Earth provides an optimal platform for global adoption of EO4SDGs ensuring a transparent methodology that allows monitoring to be standardised for all countries.
UR - https://hdl.handle.net/1959.7/uws:67600
U2 - 10.1080/20964471.2021.1948179
DO - 10.1080/20964471.2021.1948179
M3 - Article
SN - 2096-4471
VL - 5
SP - 368
EP - 390
JO - Big Earth Data
JF - Big Earth Data
IS - 3
ER -