TY - JOUR
T1 - Load centralization does not affect the kinetic and kinematic output of countermovement jumps
AU - Tredrea, Matthew S. J.
AU - Middleton, Kane J.
AU - Bourne, Matthew N.
AU - Carey, David L.
AU - Scanlan, Aaron T.
AU - Dascombe, Ben J.
PY - 2022
Y1 - 2022
N2 - This study aimed to compare the kinetics, kinematics, and performance of countermovement jumps (CMJs) when completed with 2 different loading conditions (centralized or peripheral) across increasing loads. Seventeen subjects (12 men and 5 women) randomly completed 2 series of CMJs with increasing loads separated by a 30-minute rest period between conditions. Subjects were loaded with either a weighted vest (centralized) or straight barbell (peripheral). A randomized, counterbalanced crossover design was used with incremental loads of 10, 20, 30, 40, and 50% of body mass added to the vest or barbell. Measures of peak force, acceleration, velocity, and power were calculated across each subphase of the CMJs. No significant differences were observed in kinetic or kinematic variables between loading conditions. Within each condition there were significant reductions (p < 0.05) in peak concentric velocity and acceleration, as well as significant increases (p < 0.05) in peak force when the external load increased. Furthermore, braking and propulsive phase duration significantly increased (p < 0.05) and jump height significantly decreased (p < 0.05) as the external load increased. Countermovement jump performance was similar in both central and peripheral loading, whereas increasing load significantly affected jump height, force, velocity, and acceleration variables irrespective of load position. The training stimulus from an external load placed centrally or peripherally is similar regardless of where it is positioned; however, from a practical perspective, a weighted vest may provide a more mobile and safer alternative than a barbell.
AB - This study aimed to compare the kinetics, kinematics, and performance of countermovement jumps (CMJs) when completed with 2 different loading conditions (centralized or peripheral) across increasing loads. Seventeen subjects (12 men and 5 women) randomly completed 2 series of CMJs with increasing loads separated by a 30-minute rest period between conditions. Subjects were loaded with either a weighted vest (centralized) or straight barbell (peripheral). A randomized, counterbalanced crossover design was used with incremental loads of 10, 20, 30, 40, and 50% of body mass added to the vest or barbell. Measures of peak force, acceleration, velocity, and power were calculated across each subphase of the CMJs. No significant differences were observed in kinetic or kinematic variables between loading conditions. Within each condition there were significant reductions (p < 0.05) in peak concentric velocity and acceleration, as well as significant increases (p < 0.05) in peak force when the external load increased. Furthermore, braking and propulsive phase duration significantly increased (p < 0.05) and jump height significantly decreased (p < 0.05) as the external load increased. Countermovement jump performance was similar in both central and peripheral loading, whereas increasing load significantly affected jump height, force, velocity, and acceleration variables irrespective of load position. The training stimulus from an external load placed centrally or peripherally is similar regardless of where it is positioned; however, from a practical perspective, a weighted vest may provide a more mobile and safer alternative than a barbell.
UR - https://hdl.handle.net/1959.7/uws:71455
U2 - 10.1519/JSC.0000000000003738
DO - 10.1519/JSC.0000000000003738
M3 - Article
SN - 1064-8011
VL - 36
SP - 1084
EP - 1089
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
IS - 4
ER -