Abstract
Local rotational symmetry (LRS) of a particulate system is important for understanding its structure and phase transition. However, how to properly characterize LRS for this system is still a challenge as the system normally includes both ordered and disordered local structures. Herein, based on the so-called common neighbour subcluster (CNS), we proposed a method to characterize the LRS of uniform spheres packings with the packing fraction ρ ranging within 0.20 and 0.74. It was found that different fold LRSs coexist in most packings, and their maximum degree increases at ρ < 0.64, except for the 2-fold LRS held by 6-sphere CNS that continuously increases to form the fcc crystal at ρ = 0.74. The overall LRS involving all the CNSs monotonically increases with two critical changes at ρ = (0.35-0.40) and 0.64; the evolution of individual LRSs held by specific CNS groups critically changes at ρ ≈ (0.35-0.40), 0.50, 0.55-0.60, and 0.64. The physics corresponding to these critical changes has also been discussed. The findings will significantly enrich the understanding of the structural symmetry of materials including atoms and particles.
Original language | English |
---|---|
Pages (from-to) | 14588-14595 |
Number of pages | 8 |
Journal | Physical Chemistry Chemical Physics |
Volume | 19 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Publisher Copyright:© the Owner Societies 2017.
Keywords
- atoms
- particles
- rotational symmetry
- sphere