Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity

Jesus Aguirre-Gutierrez, Yadvinder Malhi, Simon L. Lewis, Sophie Fauset, Stephen Adu-Bredu, Kofi Affum-Baffoe, Timothy R. Baker, Agne Gvozdevaite, Wannes Hubau, Sam Moore, Theresa Peprah, Kasia Ziemińska, Oliver L. Phillips, Imma Oliveras

Research output: Contribution to journalArticlepeer-review

Abstract

Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change. Here, we show that changes in climate affected all three facets of diversity in West Africa in recent decades. Taxonomic and functional diversity increased in wetter forests but tended to decrease in forests with drier climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient. Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier forests showed functional, taxonomic and phylogenetic homogenization. Understanding how different facets of diversity respond to a changing environment across climatic gradients is essential for effective long-term conservation of tropical forest ecosystems.
Original languageEnglish
Article number3346
Number of pages10
JournalNature Communications
Volume11
DOIs
Publication statusPublished - 2020

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Fingerprint

Dive into the research topics of 'Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity'. Together they form a unique fingerprint.

Cite this