Abstract
Prescribed burning is advocated for the sustainable management of fire-prone ecosystems for its capacity to reduce fuel loads and mitigate large high-intensity wildfires. However, there is a lack of comprehensive field evidence on which to base predictions of the benefits of prescribed burning for meeting either wildfire hazard reduction or conservation goals. Australian eucalypt forests are among the very few forest types in the world where prescribed burning has been practised long enough and at a large enough spatial scale to quantify its effect on the incidence and extent of unplanned fires. Nevertheless even for Australian forests evidence of the effectiveness of prescribed burning remains fragmented and largely unpublished in the scientific literature. We analysed a 52-year fire history from a eucalypt forest region in south-western Australia to quantify the impact of prescribed burning on the incidence, extent and size distribution of wildfires. Quantile regression identified the longevity of the influence of prescribed fire treatments on wildfire incidence and extent. Anomalies in the frequency-size distribution of unplanned fires were identified through a relative risk mapping using kernel density estimates. Changes in the spatial distribution of fuel age were quantified using patch metrics, while generalized additive models were applied to estimate effects of fuel age patterns on the incidence and extent of unplanned fire.
Original language | English |
---|---|
Number of pages | 11 |
Journal | Forest Ecology and Management |
DOIs | |
Publication status | Published - 2009 |
Keywords
- Eucalyptus
- Western Australia
- fire management
- forest fires
- fuelwood
- prescribed burning