TY - JOUR
T1 - Low fertility may be a significant determinant of ovarian cancer worldwide : an ecological analysis of cross- sectional data from 182 countries
AU - You, Wenpeng
AU - Symonds, Ian
AU - Henneberg, Maciej
PY - 2018
Y1 - 2018
N2 - Background: Ageing, socioeconomic level, obesity, fertility, relaxed natural selection and urbanization have been postulated as the risk factors of ovarian cancer (OC56). We sought to identify which factor plays the most significant role in predicting OC56 incidence rate worldwide. Methods: Bivariate correlation analysis was performed to assess the relationships between country-specific estimates of ageing (measured by life expectancy), GDP PPP (Purchasing power parity), obesity prevalence, fertility (indexed by the crude birth rate), opportunity for natural selection (Ibs) and urbanization. Partial correlation was used to compare contribution of different variables. Fisher A-to-Z was used to compare the correlation coefficients. Multiple linear regression (Enter and Stepwise) was conducted to identify significant determinants of OC56 incidence. ANOVA with post hoc Bonferroni analysis was performed to compare differences between the means of OC56 incidence rate and residuals of OC56 standardised on fertility and GDP respectively between the six WHO regions. Results: Bivariate analyses revealed that OC56 was significantly and strongly correlated to ageing, GDP, obesity, low fertility, Ibs and urbanization. However, partial correlation analysis identified that fertility and ageing were the only variables that had a significant correlation to OC56 incidence when the other five variables were kept statistically constant. Fisher A-to-Z revealed that OC56 had a significantly stronger correlation to low fertility than to ageing. Stepwise linear regression analysis only identified fertility as the significant predictor of OC56. ANOVA showed that, between the six WHO regions, multiple mean differences of OC56 incidence were significant, but all disappeared when the contributing effect of fertility on OC56 incidence rate was removed. Conclusions: Low fertility may be the most significant determining predictor of OC56 incidence worldwide.
AB - Background: Ageing, socioeconomic level, obesity, fertility, relaxed natural selection and urbanization have been postulated as the risk factors of ovarian cancer (OC56). We sought to identify which factor plays the most significant role in predicting OC56 incidence rate worldwide. Methods: Bivariate correlation analysis was performed to assess the relationships between country-specific estimates of ageing (measured by life expectancy), GDP PPP (Purchasing power parity), obesity prevalence, fertility (indexed by the crude birth rate), opportunity for natural selection (Ibs) and urbanization. Partial correlation was used to compare contribution of different variables. Fisher A-to-Z was used to compare the correlation coefficients. Multiple linear regression (Enter and Stepwise) was conducted to identify significant determinants of OC56 incidence. ANOVA with post hoc Bonferroni analysis was performed to compare differences between the means of OC56 incidence rate and residuals of OC56 standardised on fertility and GDP respectively between the six WHO regions. Results: Bivariate analyses revealed that OC56 was significantly and strongly correlated to ageing, GDP, obesity, low fertility, Ibs and urbanization. However, partial correlation analysis identified that fertility and ageing were the only variables that had a significant correlation to OC56 incidence when the other five variables were kept statistically constant. Fisher A-to-Z revealed that OC56 had a significantly stronger correlation to low fertility than to ageing. Stepwise linear regression analysis only identified fertility as the significant predictor of OC56. ANOVA showed that, between the six WHO regions, multiple mean differences of OC56 incidence were significant, but all disappeared when the contributing effect of fertility on OC56 incidence rate was removed. Conclusions: Low fertility may be the most significant determining predictor of OC56 incidence worldwide.
UR - https://hdl.handle.net/1959.7/uws:75778
U2 - 10.1186/s13048-018-0441-9
DO - 10.1186/s13048-018-0441-9
M3 - Article
SN - 1757-2215
VL - 11
JO - Journal of Ovarian Research
JF - Journal of Ovarian Research
IS - 1
M1 - 68
ER -