Abstract
The response of mature forest ecosystems to a rising atmospheric carbon dioxide concentration (span classCombining double low line"inline-formula"iC/ia/span) is a major uncertainty in projecting the future trajectory of the Earth's climate. Although leaf-level net photosynthesis is typically stimulated by exposure to elevated span classCombining double low line"inline-formula"iC/ia/span (espan classCombining double low line"inline-formula"iC/ia/span), it is unclear how this stimulation translates into carbon cycle responses at the ecosystem scale. Here we estimate a key component of the carbon cycle, the gross primary productivity (GPP), of a mature native eucalypt forest exposed to free-air span classCombining double low line"inline-formula"CO2/span enrichment (the EucFACE experiment). In this experiment, light-saturated leaf photosynthesis increased by 19 % in response to a 38 % increase in span classCombining double low line"inline-formula"iC/ia/span. We used the process-based forest canopy model, MAESPA, to upscale these leaf-level measurements of photosynthesis with canopy structure to estimate the GPP and its response to espan classCombining double low line"inline-formula"iC/ia/span. We assessed the direct impact of espan classCombining double low line"inline-formula"iC/ia/span, as well as the indirect effect of photosynthetic acclimation to espan classCombining double low line"inline-formula"iC/ia/span and variability among treatment plots using different model scenarios./p At the canopy scale, MAESPA estimated a GPP of 1574 g C mspan classCombining double low line"inline-formula"-2/span yrspan classCombining double low line"inline-formula"-1/span under ambient conditions across 4 years and a direct increase in the GPP of span classCombining double low line"inline-formula"+/span11 % in response to espan classCombining double low line"inline-formula"iC/ia/span. The smaller canopy-scale response simulated by the model, as compared with the leaf-level response, could be attributed to the prevalence of RuBP regeneration limitation of leaf photosynthesis within the canopy. Photosynthetic acclimation reduced this estimated response to 10 %. After taking the baseline variability in the leaf area index across plots in account, we estimated a field GPP response to espan classCombining double low line"inline-formula"iC/ia/span of 6 % with a 95 % confidence interval (span classCombining double low line"inline-formula"-/span2 %, 14 %). These findings highlight that the GPP response of mature forests to espan classCombining double low line"inline-formula"iC/ia/span is likely to be considerably lower than the response of light-saturated leaf photosynthesis. Our results provide an important context for interpreting the espan classCombining double low line"inline-formula"iC/ia/span responses of other components of the ecosystem carbon cycle.
Original language | English |
---|---|
Pages (from-to) | 265-279 |
Number of pages | 15 |
Journal | Biogeosciences |
Volume | 17 |
Issue number | 2 |
DOIs | |
Publication status | Published - 20 Jan 2020 |
Bibliographical note
Publisher Copyright:© Author(s) 2020.
Open Access - Access Right Statement
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)Keywords
- Eucalyptus
- atmospheric carbon dioxide
- carbon cycle (biogeochemistry)
- forests and forestry
- leaf area index
- photosynthesis