Abstract
Low voltage imaging, X-ray microanalysis and X-ray mapping has become very important for the investigation of nanomaterials and their surfaces. This is especially true for low voltage imaging of non-conductive samples and beam sensitive samples. Operating the SEM at lower accelerating voltage allows for greater surface sensitivity, the ability to minimize charging effects, nanometre scale lateral X-ray spatial resolution and nanoscale X-ray depth sensitivity. Determining the correct accelerating voltage for imaging in a SEM is dependent on the instrument's operating performance at low voltage, the material being viewed, and other factors that limit effectiveness of low voltage microanalysis, which will be discussed in this paper.
Original language | English |
---|---|
Article number | 12019 |
Number of pages | 14 |
Journal | IOP Conference Series: Materials Science and Engineering |
Volume | 109 |
DOIs | |
Publication status | Published - 2016 |
Open Access - Access Right Statement
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (https://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd.Keywords
- X-ray microanalysis
- low-voltage scanning electron microscopy