Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR

Christopher E. Gordon, Owen F. Price, Elizabeth M. Tasker

Research output: Contribution to journalArticlepeer-review

Abstract

Abstract. There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing literature suggests that vegetation responses are nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 x 10 m, 30 x 30 m, 50 x 50 m, 100 x 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire regrowth in these areas. Moderate to strong positive associations were observed between LiDAR and field surveys of mid-story vegetation cover between 0.5–3.0 m. Thus our LiDAR survey was an apt representation of on-ground vegetation cover. LiDAR-derived mid-story vegetation cover was 22–40% lower in areas of low and moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However much of the variance associated with these models was unexplained, presumably because soil seed banks varied at finer scales than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity, demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for ecosystem conservation and fire management because they: indicate that native vegetation are responsive and resilient to high-severity fire, and show the usefulness of remote sensing tools such as LiDAR to monitor post-fire vegetation recovery over large areas in situ.
Original languageEnglish
Pages (from-to)1618-1632
Number of pages15
JournalEcological Applications
Volume27
Issue number5
DOIs
Publication statusPublished - 2017

Fingerprint

Dive into the research topics of 'Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR'. Together they form a unique fingerprint.

Cite this