Abstract
Conservation planning and population assessment for widely-distributed, but vulnerable, arboreal folivore species demands cost-effective mapping of habitat suitability over large areas. This study tested whether multispectral data from WorldView-3 could be used to estimate and map foliar digestible nitrogen (DigN), a nutritional measure superior to total nitrogen for tannin-rich foliage for the koala (Phascolarctos cinereus). We acquired two WorldView-3 images (November 2015) and collected leaf samples from Eucalyptus woodlands in semi-arid eastern Australia. Linear regression indicated the normalized difference index using bands “Coastal” and “NIR1” best estimated DigN concentration (% dry matter, R2 = 0.70, RMSE = 0.19%). Foliar DigN concentration was mapped for multi-species Eucalyptus open woodlands across two landscapes using this index. This mapping method was tested on a WorldView-2 image (October 2012) with associated koala tracking data (August 2010 to November 2011) from a different landscape of the study region. Quantile regression showed significant positive relationship between estimated DigN and occurrence of koalas at 0.999 quantile (R2 = 0.63). This study reports the first attempt to use a multispectral satellite-derived spectral index for mapping foliar DigN at a landscape-scale (100s km2). The mapping method can potentially be incorporated in mapping and monitoring koala habitat suitability for conservation management.
Original language | English |
---|---|
Article number | 215 |
Number of pages | 17 |
Journal | Remote Sensing |
Volume | 11 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2019 |
Open Access - Access Right Statement
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Keywords
- artificial satellites in remote sensing
- ecological mapping
- eucalyptus
- koala
- nitrogen in animal nutrition