TY - JOUR
T1 - Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model
AU - Vezy, Rémi
AU - Christina, Mathias
AU - Roupsard, Olivier
AU - Nouvellon, Yann
AU - Duursma, Remko
AU - Medlyn, Belinda
AU - Soma, Maxime
AU - Charbonnier, Fabien
AU - Blitz-Frayret, Céline
AU - Stape, José-Luiz
AU - Laclau, Jean-Paul
AU - Melo Virginio Filho, Elias de
AU - Bonnefond, Jean-Marc
AU - Rapidele, Bruno
AU - Do, Frédéric C.
AU - Rocheteau, Alain
AU - Picart, Delphine
AU - Borgonovo, Carlos
AU - Loustau, Denis
AU - Le Maire, Guerric
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Evapotranspiration and energy partitioning are complex to estimate because they result from the interaction of many different processes, especially in multi-species and multi-strata ecosystems. We used MAESPA model, a mechanistic, 3D model of coupled radiative transfer, photosynthesis, and balances of energy and water, to simulate the partitioning of energy and evapotranspiration in homogeneous tree plantations, as well as in heterogeneous multi-species, multi-strata agroforests with diverse spatial scales and management schemes. The MAESPA model was modified to add (1) calculation of foliage surface water evaporation at the voxel scale; (2) computation of an average within-canopy air temperature and vapour pressure; and (3) use of (1) and (2) in iterative calculations of soil and leaf temperatures to close ecosystem-level energy balances. We tested MAESPA model simulations on a simple monospecific Eucalyptus stand in Brazil, and also in two complex, heterogeneous Coffea agroforests in Costa Rica. MAESPA satisfactorily simulated the daily and seasonal dynamics of net radiation (RMSE = 29.6 and 28.4 W m−2; R2 = 0.99 and 0.99 for Eucalyptus and Coffea sites respectively) and its partitioning between latent-(RMSE = 68.1 and 37.2 W m−2; R2 = 0.87 and 0.85) and sensible-energy (RMSE = 54.6 and 45.8 W m−2; R2 = 0.57 and 0.88) over a one-year simulation at half-hourly time-step. After validation, we use the modified MAESPA to calculate partitioning of evapotranspiration and energy between plants and soil in the above-mentioned agro-ecosystems. In the Eucalyptus plantation, 95% of the outgoing energy was emitted as latent-heat, while the Coffea agroforestry system’s partitioning between sensible and latent-heat fluxes was roughly equal. We conclude that MAESPA process-based model has an appropriate balance of detail, accuracy, and computational speed to be applicable to simple or complex forest ecosystems and at different scales for energy and evapotranspiration partitioning.
AB - Evapotranspiration and energy partitioning are complex to estimate because they result from the interaction of many different processes, especially in multi-species and multi-strata ecosystems. We used MAESPA model, a mechanistic, 3D model of coupled radiative transfer, photosynthesis, and balances of energy and water, to simulate the partitioning of energy and evapotranspiration in homogeneous tree plantations, as well as in heterogeneous multi-species, multi-strata agroforests with diverse spatial scales and management schemes. The MAESPA model was modified to add (1) calculation of foliage surface water evaporation at the voxel scale; (2) computation of an average within-canopy air temperature and vapour pressure; and (3) use of (1) and (2) in iterative calculations of soil and leaf temperatures to close ecosystem-level energy balances. We tested MAESPA model simulations on a simple monospecific Eucalyptus stand in Brazil, and also in two complex, heterogeneous Coffea agroforests in Costa Rica. MAESPA satisfactorily simulated the daily and seasonal dynamics of net radiation (RMSE = 29.6 and 28.4 W m−2; R2 = 0.99 and 0.99 for Eucalyptus and Coffea sites respectively) and its partitioning between latent-(RMSE = 68.1 and 37.2 W m−2; R2 = 0.87 and 0.85) and sensible-energy (RMSE = 54.6 and 45.8 W m−2; R2 = 0.57 and 0.88) over a one-year simulation at half-hourly time-step. After validation, we use the modified MAESPA to calculate partitioning of evapotranspiration and energy between plants and soil in the above-mentioned agro-ecosystems. In the Eucalyptus plantation, 95% of the outgoing energy was emitted as latent-heat, while the Coffea agroforestry system’s partitioning between sensible and latent-heat fluxes was roughly equal. We conclude that MAESPA process-based model has an appropriate balance of detail, accuracy, and computational speed to be applicable to simple or complex forest ecosystems and at different scales for energy and evapotranspiration partitioning.
KW - agroforestry systems
KW - evapotranspiration
KW - forest canopies
KW - forest ecology
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:45862
U2 - 10.1016/j.agrformet.2018.02.005
DO - 10.1016/j.agrformet.2018.02.005
M3 - Article
SN - 0168-1923
VL - 253-254
SP - 203
EP - 217
JO - Agricultural and Forest Meteorology
JF - Agricultural and Forest Meteorology
ER -