Microbial community changes with decaying chloramine residuals in a lab-scale system

Bal Krishna KC, Arumugam Sathasivan, Maneesha P. Ginige

    Research output: Contribution to journalArticlepeer-review

    71 Citations (Scopus)

    Abstract

    When chloramine is used as a disinfectant, managing an acceptable "residual" throughout the water distribution systems particularly once nitrification has set in is challenging. Managing chloramine decay prior to the onset of nitrification through effective control strategies is important and to-date the strategies developed around nitrification has been ineffective. This study aimed at developing a more holistic knowledge on how decaying chloramine and nitrification metabolites impact microbial communities in chloraminated systems. Five lab-scale reactors (connected in series) were operated to simulate a full-scale chloraminated distribution system. Culture independent techniques (cloning and qPCR) were used to characterise and quantify the mixed microbial communities in reactors maintaining a residual of high to low (2.18-0.03mg/L). The study for the first time associates chloramine residuals and nitrification metabolites to different microbial communities. Bacterial classes Solibacteres, Nitrospira, Sphingobacteria and Betaproteobacteria dominated at low chloramine residuals whereas Actinobacteria and Gammaproteobacteria dominated at higher chloramine residuals. Prior to the onset of nitrification bacterial genera Pseudomonas, Methylobacterium and Sphingomonas were found to be dominant and Sphingomonas in particular increased with the onset of nitrification. Nitrosomonas urea, oligotropha, and two other novel ammonia-oxidizing bacteria were detected once the chloramine residuals had dropped below 0.65mg/L. Additionally nitrification alone failed to explain chloramine decay rates observed in these reactors. The finding of this study is expected to re-direct the focus from nitrifiers to heterotrophic bacteria, which the authors believe could hold the key towards developing a control strategy that would enable better management of chloramine residuals.
    Original languageEnglish
    Pages (from-to)4666-4679
    Number of pages14
    JournalWater Research
    Volume47
    Issue number13
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Microbial community changes with decaying chloramine residuals in a lab-scale system'. Together they form a unique fingerprint.

    Cite this