Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils

Yunying Fang, Loic Nazaries, Brajesh K. Singh, Bhupinder Pal Singh

Research output: Contribution to journalArticlepeer-review

Abstract

Agronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and reduce the uncertainty to predict carbon (C) sequestration potential. Using a 13C‐labelled wheat residue, this 126‐day incubation study examined the dominant microbial mechanisms that underpin the PE response to inputs of wheat residue and nutrients (nitrogen, phosphorus and sulfur) in two contrasting soils. The residue input caused positive PE through “co‐metabolism”, supported by increased microbial biomass, C and nitrogen (N) extracellular enzyme activities (EEAs), and gene abundance of certain microbial taxa (Eubacteria, β‐Proteobacteria, Acidobacteria, and Fungi). The residue input could have induced nutrient limitation, causing an increase in the PE via “microbial nutrient mining” of native soil organic matter, as suggested by the low C‐to‐nutrient stoichiometry of EEAs. At the high residue, exogenous nutrient supply (cf. no‐nutrient) initially decreased positive PE by alleviating nutrient mining, which was supported by the low gene abundance of Eubacteria and Fungi. However, after an initial decrease in PE at the high residue with nutrients, the PE increased to the same magnitude as without nutrients over time. This suggests the dominance of “microbial stoichiometry decomposition”, supported by higher microbial biomass and EEAs, while Eubacteria and Fungi increased over time, at the high residue with nutrients cf. no‐nutrient in both soils. Our study provides novel evidence that different microbial mechanisms operate simultaneously depending on organic C and nutrient availability in a residue‐amended soil. Our results have consequences for SOC modelling and integrated nutrient management employed to increase SOC in arable farmlands.
Original languageEnglish
Pages (from-to)2775-2790
Number of pages16
JournalGlobal Change Biology
Volume24
Issue number7
DOIs
Publication statusPublished - 2018

Open Access - Access Right Statement

This version of the article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions: https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html

Keywords

  • carbon
  • extracellular enzymes
  • isotopes
  • stoichiometry

Fingerprint

Dive into the research topics of 'Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils'. Together they form a unique fingerprint.

Cite this